

The research leading to these results has received funding from the European Union’s Horizon 2020 Research and
Innovation Programme, through the PAPAYA project, under Grant Agreement No. 786767. The content and results of this
deliverable reflect the view of the consortium only. The Research Executive Agency is not responsible for any use that
may be made of the information it contains.

D4.2 – PROGRESS REPORT ON PLATFORM
IMPLEMENTATION AND PETS INTEGRATION

Work Package WP 4, Platform Design and Development

Lead Author Boris Rozenberg, Ron Shmelkin (IBM)

Contributing Author(s)

Beyza Bozdemir, Orhan Ermis, Melek Önen (EURC)
Sebastien Canard, Bastien Vialla (ORA)
Angel Palomares Perez (ATOS)
Tobias Pulls (KAU)

Reviewers Sebastien Canard (ORA)
Angel Palomares Perez (ATOS)

Due date 30.04.2020

Date 30.04.2020

Version 1.0

Dissemination Level PU (Public)

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

2

Revision History

Revision Date Editor Notes
0.1 03.04.2020 Boris Rozenberg (IBM) ToC

0.2 04.04.2020 All contributing authors A version for the 1st internal review

0.3 20.04.2020 All contributing authors A version after the 1st internal review

0.4 20.04.2020 All contributing authors A version after the 2nd internal review

0.5 27.04.2020 Orhan Ermis (EURC) Quality Check completed

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

3

Table of Contents

Executive Summary .. 7
Glossary of Terms... 9
1 Introduction .. 11

1.1 Purpose and Scope ... 11
1.2 Structure of the Document ... 11

2 PAPAYA FRAMEWORK .. 12
2.1 Main Stakeholders ... 12
2.2 PAPAYA framework architecture ... 12

3 Platform Core Services .. 15
3.1 Apply Neural Network Model ... 15

3.1.1 Privacy-preserving NN classification based on 2PC... 15
3.1.2 Privacy-preserving NN classification based on PHE .. 19
3.1.3 Solution based on Homomorphic Encryption ... 24
3.1.4 Privacy-preserving NN classification based on hybrid approach 24

3.2 Collaborative Training of Neural Network .. 26
3.2.1 Main components and their relationships ... 26
3.2.2 Behavioral analysis: ... 29
3.2.3 Deployment and configuration ... 30
3.2.4 Implementation constraints .. 30
3.2.5 APIs ... 31
3.2.6 Service integration evaluation .. 32

3.3 Clustering .. 32
3.3.1 Privacy-preserving clustering based on 2PC.. 32
3.3.2 Privacy-preserving clustering based on MinHash .. 35

3.4 Basic Statistics .. 41
3.4.1 Privacy-preserving statistics based on Functional Encryption 41
3.4.2 Privacy-preserving Counting using Bloom Filters ... 41

4 Platform Security and Transparency .. 44

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

4

4.1 IAM .. 44
4.1.1 Main components and their relationships ... 44
4.1.2 Deployment and configuration ... 45
4.1.3 Implementation constraints .. 47
4.1.4 APIs ... 47
4.1.5 Service integration evaluation .. 47

4.2 Auditing ... 47
4.2.1 Platform auditing .. 47
4.2.2 Agent auditing.. 49

4.3 Key Manager ... 50
4.3.1 Main components and their relationships ... 50
4.3.2 Deployment and configuration ... 50
4.3.3 Implementation constraints .. 50
4.3.4 APIs ... 50
4.3.5 Integration evaluation .. 62

5 PAPAYA Dashboards .. 63
5.1 Platform Dashboard... 63

5.1.1 Main components and their relationships ... 63
5.1.2 Deployment and configuration ... 63
5.1.3 Implementation constraints .. 63
5.1.4 APIs ... 63
5.1.5 Integration evaluation .. 64

5.2 Agent Dashboard .. 64
5.2.1 Overview ... 64
5.2.2 Integration evaluation .. 64

6 Data Subject Toolbox... 65
6.1 Explaining Privacy-preserving Analytics .. 65

6.1.1 Overview ... 65
6.1.2 Integration evaluation .. 65

6.2 Data Disclosure Visualization Tool .. 66
6.2.1 Overview ... 66

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

5

6.2.2 Integration evaluation .. 66
6.3 Annotated Log View Tool... 66

6.3.1 Overview ... 66
6.3.2 Integration evaluation .. 67

6.4 Privacy Engine .. 67
6.4.1 Main components and their relationships ... 67
6.4.2 Deployment and configuration ... 67
6.4.3 Implementation constraints .. 68
6.4.4 APIs ... 68
6.4.5 Integration evaluation .. 68

7 Platform Deployment ... 69
7.1 Platform initialization and platform dashboard deployment .. 69
7.2 Service upload and deployment... 69

8 Conclusions ... 72
9 References .. 73

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

6

List of Figures

Figure 1 PAPAYA Framework architecture .. 12
Figure 2 Service Integration Evaluation for PP NN Classification based on 2PC 19
Figure 3 Service integration evaluation ... 25
Figure 4: The client agent components ... 27
Figure 5: The server components.. 28
Figure 6: Collaborative training - sequence diagram .. 29
Figure 7 Server-side component ... 36
Figure 8 Client-side component .. 37
Figure 9 Trajectory clustering analysis .. 38
Figure 10 Privacy-preserving statistics with Bloom Filters .. 43
Figure 11 IAM and Security Proxy in the PAPAYA Platform... 44
Figure 12 Deployment steps ... 45
Figure 13: Platform auditing components and the flow of logs. .. 48

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

7

Executive Summary
Rather than several standalone modules, the PAPAYA project aims at developing an integrated
platform for privacy preserving data analytics to make them available in a broad spectrum of
products and services, with usable, friendly and accessible safeguards options. The main goal of
the platform is to be used by service developers to deploy and run privacy-preserving services,
and by service consumers, that are interested to employ privacy-preserving analytics. In the
previous deliverable (i.e. D4.1 [1]) we presented a first version of the platform functional design,
architecture, and deployment. In particular, (1) we described the design of the main platform
components that were elicited based on the requirements presented in D2.2 [2], (2) we explained
how different privacy preserving primitives being developed in WP3 (see D3.1 [3] and D3.3 [4])
are integrated into the platform in a way that they will be interoperable/compatible with each other
and could work together in the integrated platform; and (3) we presented the design of platform
dashboards that provide the UI, configuration functionality, and visualization functionality. In this
deliverable we describe changes to the services specified in D4.1 [1] and provide description of
several new services being created on top of the approaches developed in WP3 and described
in detail in D3.3 [4].

As already mentioned in D4.1 [1], PAPAYA platform services are specified based on the four
generic usage scenarios, namely upload model, create model, apply model and collaborative
training. In upload model, an already trained machine learning (ML) model can be uploaded to
the PAPAYA platform when the client wants to delegate the computationally intensive task (which
is applying a model on the client’s sensitive data) in a privacy-preserving manner. The create
model is used when the client is not able to create the ML model; therefore, the PAPAYA platform
generates a model on the protected data shared by the client. Apply model is the use case where
already uploaded or created model is applied on the client’s protected data in a privacy-preserving
manner. Finally, in collaborative training, two or more participants perform a ML training
collaboratively while preserving the privacy of the training data.

The PAPAYA platform consists of the following groups of services:

• Privacy-preserving analytics defined in the deliverables D3.1 [3] and D3.3 [5] such as
classification on Neural Networks, privacy-preserving clustering, privacy-preserving
statistics, and privacy-preserving collaborative training of Neural Networks

• Security and transparency services, including the identity access management (IAM) for
authentication and authorization services to the different components that will be
integrated in the PAPAYA platform, auditing to support auditing and towards being able to
hold stakeholders accountable for their use of PAPAYA, and key manager for managing
the cryptographic material during the whole lifecycle of the PAPAYA project in the cases
where it will be required.

• The PAPAYA platform provides two dashboards for configuration and visualization,
namely the platform dashboard and the agent dashboard. The platform dashboard is used
for configuration and monitoring the services provided by the platform whereas the agent

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

8

dashboard is used for viewing the data processing logs from an agent and for showing the
configuration of the agent.

• Data subject toolbox services provide a number of mostly independent tools (Explaining
Privacy-preserving Analytics, Data Disclosure Visualization, Annotated Log View and
Privacy Engine) which provide versatile services related to the data subject privacy.
Moreover, the PAPAYA platform provides means to its clients to integrate one or more
tools from the provided toolbox to generate an integrated data subject dashboard.

As a proof of concept usage, the platform will be deployed on IBM Kubernetes cloud service. In
addition to that, all services are designed to be generic in order to be deployed on any other cloud
platforms.

The final platform implementation and PETs integration after validation on project use cases,
including final version of the dashboard will be given in deliverable D4.3 [6].

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

9

Glossary of Terms
2PC Two-Party Computation
AA Auditing Agent
ABY Arithmetic sharing, Boolean sharing and Yao’s garbled circuits framework
AC Auditing Collector
ALT Annotated Log view Tool
API Application Programming Interface
BF Bloom Filters
BGV Brakerski-Gentry-Vaikuntanathan homomorphic encryption scheme [7]
BFV Brakerski/Fan-Vercauteren fully homomorphic encryption scheme [8, 9]
CA Certificate Authority
CKKS Cheon-Kim-Kim-Song fully homomorphic encryption scheme [10]
CLI Command Line Interface
CNN Convolutional Neural Network
CPU Central Processing Unit
CR Container Registry
DB Data Base
DC Data Controller
DP Differential Privacy
DNN Deep Neural Network
DS Data Subject
DSRM Data Subject Rights Manager
DVT Disclosure Visualization Tool
ECG Electro cardiogram
ES ElasticSearch
FC Fully Connected
FE Functional Encryption
FHE Fully Homomorphic Encryption
GRU Gated Recurrent Unit
HE Homomorphic Encryption
IAM Identity Access Manager
KM Key Manager
ML Machine Learning
MLP Multilayer Perceptron
NN Neural Network
PE Privacy Engine
PHE Partially Homomorphic Encryption
PoC Proof of Concept
PPM Privacy Preferences Manager
RAM Random Access Memory

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

10

REST Representational State Transfer
ReLU Rectified Linear Unit
RNN Recurrent Neural Network
SIMD Single Instruction Multiple Data

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

11

1 Introduction

1.1 Purpose and Scope
The purpose of this deliverable is to provide a comprehensive description of the PAPAYA platform
architecture. This deliverable extends the platform design and architecture already presented in
D4.1 [1]. In particular, it provides modifications to already described services as well as
specification of several new services developed on top of the analytics developed in WP3 and
presented in D3.3 [5]. The intended audience for this document consists of two main groups: (1)
service developers, who could use the document to understand the design of the existing services
and to develop and deploy their own services; (2) service users, who could use the document to
understand how to employ the services available on the platform and how to incorporate them in
their applications.

It is important to note that the description of the underlying algorithms employed by the services
presented in this document is not in the scope of this deliverable (they are described in D3.1 [3]
and in D3.3 [5]).

1.2 Structure of the Document
The rest of the document is organized as follows:

• Section 2 provides a high-level overview of the PAPAYA framework, including description
of main stakeholders.

• Section 3 describes in detail the core PAPAYA services, which are defined in the
deliverable D3.1 [3] and deliverable D3.3 [5]. Provided services in the scope of this
deliverable are: (1) Privacy-preserving classification on Neural Networks; (2) Privacy-
preserving collaborative training of Neural Networks; (3) Privacy-preserving clustering;
and (4) Privacy-preserving statistics.

• Section 4 gives details about how security and transparency is achieved in the platform,
including authentication, authorization, auditing and key management for cryptographic
tools (if it is required).

• Section 5 presents PAPAYA dashboards, namely platform dashboard and agent
dashboard.

• Section 6 dedicated to Data Subject Toolbox, which provides versatile services
(Explaining Privacy-preserving Analytics, Data Disclosure Visualization, Annotated Log
View and Privacy Engine) related to the data subject privacy. Tools presented in this
section can then be used to form a data subject dashboard.

• In Section 7 we describe how to deploy and run all platform components.
• We conclude the deliverable in Section 8.

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

12

2 PAPAYA FRAMEWORK

2.1 Main Stakeholders
On a high-level, there are four main stakeholders in the PAPAYA framework:

1. Platform clients: stakeholders who wish to perform some analytics in a privacy
preserving manner. Platform clients can be considered as Data Controllers or external
queriers who are allowed to request some analytics results while not being the actual
owners of the data.

2. Platform administrators: responsible for platform administration purposes such as
resource allocation or monitoring.

3. Service providers: the author of the services available on the platform.
4. Data Subjects: end-users (e.g. application user) of the Platform clients.

Details about PAPAYA usage scenarios can be found in D4.1 [1].

2.2 PAPAYA framework architecture
The PAPAYA framework (see Figure 1) is composed of two main groups of components: (1) the
platform-side components that will be running on the (non-trusted, but semi honest) Kubernetes1
cloud server; and (2) client side components, that will be running on trusted client environment.

Figure 1 PAPAYA Framework architecture

From the functional perspective, the PAPAYA framework components can be regrouped into the
following categories (more details about each category can be found in deliverables D4.1 [1] and
D3.1 [3]):

1 https://kubernetes.io/

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

13

• The privacy-preserving analytics services (colored with green in Figure 1) which will
allow platform clients to perform analytics of interest, in a privacy-preserving manner. In
the first version of PAPAYA we will support the following analytics:

1. Privacy-preserving NN classification. We will provide four services for applying neural

network for the purpose of classification in a privacy-preserving manner: (1) 2PC-
based; (2) PHE-based; (3) FHE-based; and (4) Hybrid approach. Each one could be
preferable than others in different settings, mainly depending on NN architecture

2. Privacy-preserving collaborative training of NN. The service allows multiple
participants to perform a ML training collaboratively, while preserving the privacy of
the training data.

3. Privacy-preserving trajectory clustering. The service provides means to cluster
trajectories in a privacy preserving manner.

4. Privacy-preserving basic statistics. The service provides means for privacy-preserving
computation of statistics using functional encryption and privacy-preserving counting
using Bloom Filters.

The users of these services are platform clients who can either be Data Controllers or
external queriers (in the case for privacy preserving trajectory clustering who are authorized
by Data Controllers to request some analytics results. Each service is divided into two parts:

1. Server – responsible for performing analytics of interest on encrypted data and will run

on a PAPAYA’s Kubernetes cluster.
2. Agent – responsible for communication with the appropriate server-side component

and responsible for managing cryptographic operations for the client. The agent will
be downloaded from the Container Registry (CR) as a Docker image and deployed on
a client side. Deployment and execution will be under the responsibility of the platform
client.

• The platform security and transparency services (colored with red in Figure 1) which

will provide platform authorization, authentication (Identity and Access Management -
IAM), auditing and cryptographic Key Manager (if needed).

• The PAPAYA dashboards (colored with yellow in Figure 1):

1. Platform dashboard will allow: (1) service providers to deploy privacy-preserving

services; (2) platform clients to choose/run privacy preserving services and review
operational and auditing logs; and (3) platform administrators to configure and
manage the platform.

2. Agent dashboard will allow platform clients to visualize the configuration of the
agent running on the client side and review operational and auditing logs.

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

14

• Data Subject Toolbox (colored with blue in Figure 1) consists of a number of mostly
independent tools (DS Tool 1: Explaining Privacy-preserving Analytic, DS Tool 2: Data
Disclosure Visualization, DS Tool 3: Annotated Log View and DS Tool 4: Privacy Engine),
which provide versatile tools for data protection by design by platform clients (acting as
data controllers) towards data subjects whose personal data is processed in their services.

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

15

3 Platform Core Services

3.1 Apply Neural Network Model
In this section, we describe several services for applying neural network for the purpose of
classification in a privacy-preserving manner. The detailed description of these services can be
found in deliverables D3.1 [3] and D3.3 [5].

Prior to using any of the services described in this section, a Neural Network model should be
trained locally based on the clear text data with all the required optimization and the dimensionality
reduction. After achieving the desired accuracy, the trained model (i.e. architecture and weights)
should be saved in a supported format and passed to the service later as described in each of
the following subsections.

3.1.1 Privacy-preserving NN classification based on 2PC

In this section, updates on APIs and details on the deployment, configuration and implementation
of the privacy preserving NN classification based on 2PC service are presented. Since there is
no update on the main components, relationships between these components and the behavioral
analysis of this service subsections, they remain the same as introduced in D4.1 [1]. Finally, the
evaluation of the service integration is overviewed in Section 3.1.1.4.

3.1.1.1 Deployment and configuration

Deployment. As stated in D4.1 [1], the 2PC-based privacy-preserving NN classification based on
two-party computation (2PC) service involves two components, namely the client-side and server-
side components as stated in D4.1 [1]. Both of these components are deployed as Docker
containers. The server-side component uses a particular NN model for arrhythmia classification.
The model is also installed during the deployment of server component. Before its deployment,
the server component should receive the information of the local IP address (which should be
0.0.0.0 by default because of the use of Flask framework as a RESTful service), local HTTP port
number and the TCP port number (any available port number, except the reserved ports by
Ubuntu operating system). Note that the local IP address and the port number is required to run
ABY server in the server component.

Configuration. This service does not require any specific configuration for the installed libraries,
tools and the operating system that will be used for accomplishing the 2PC-based PP NN
classification. On the other hand, once the server-side component is deployed to the cloud
environment, it will be assigned a new public IP address and a port number. This newly assigned
communication information should be stored in the client-side component to execute 2PC
computation. Therefore, the one and only configuration that is required for the client-side
component, is accomplished by using “init/” API call.

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

16

3.1.1.2 Implementation constraints

The 2PC-based Privacy-preserving NN classification service uses a slightly modified version of
Arithmetic-Boolean-Yao (ABY) as a secure 2PC framework. RESTful Web-service requires
Python v3 and Flask v1.0.0 (or higher versions).

3.1.1.3 APIs

Server-side Component APIs:

There is only one RESTful API call at the server-side component in this service and this for
initiating the classification in the server side (classify/). The rest of the communication between
the server-side component and the client-side component is realized by using ABY sockets.

POST classify/

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

17

Client-side Component APIs:

There are two RESTful API calls at the client-side component. The first one is used for initializing
the public IP address and the port number of the server (init/) and the second one is used for
initiating the classification at the client side. The rest of the communication between the server-
side component and the client-side component is realized using ABY sockets.

POST init/

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

18

POST classify/

3.1.1.4 Service integration evaluation

We have implemented each component as a Docker container. The client-side component is
deployed on the local machine and the server-side component is deployed on the IBM cloud. After
the server-side component is deployed to IBM’s cloud, the server-side component’s public IP
address and the port number are stored in the client-side component via the init/ API call. Later,
the file to be processed is uploaded to the client-side component using classify/ API call of the
client. Then, the client-side component sends the classification request to the server-side
component. Once two components are ready for classification, both parties execute classification

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

19

using the ABY framework. We have tested our integration by following the steps illustrated in
Figure 2 and the modules were executed correctly and output the expected classification result.

Figure 2 Service Integration Evaluation for PP NN Classification based on 2PC

3.1.2 Privacy-preserving NN classification based on PHE

In this section, updates on APIs and details for the deployment, configuration and implementation
of the PHE-based privacy-preserving NN classification-based service are presented. Since there
is no update on the main components, relationships between these components and the
behavioral analysis of this service subsections, these sections remain the same as introduced in
D4.1 [1]. Finally, the evaluation of the service integration for a particular NN model is overviewed
in the service integration evaluation Section 3.1.2.4.

3.1.2.1 Deployment and configuration

Deployment. As stated in D4.1 [1], the PHE-based privacy-preserving NN classification service
involves two components: the client-side and server-side components. Both of these components
are deployed as docker containers. The current version of this service works on particular NN
models (ECG classification and MNIST dataset classification). The model is also installed during
the deployment of the server-side component. Before its deployment, both the server and the
client components may need the information of the local IP address, local HTTP port and local

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

20

TCP port. Note that the local IP address and the local TCP port number are required to ensure
communication between these two parties achieved through socket programming.

Configuration. This service does not require any specific configuration for the installed libraries,
tools and the operating system that will be used for accomplishing the PHE-based PP NN
classification. On the other hand, once the server-side component is deployed to a cloud
environment, it will have a new public IP address and a port number. This newly assigned
communication information should be also stored in the client-side component to execute
classification. Therefore, the one and only configuration is required for the client-side component,
which is realized by using “init/” API call.

3.1.2.2 Implementation constraints

The PHE-based privacy-preserving NN classification service uses the Paillier library. Socket
programing is used to ensure the communication between the two parties. The REST-full web-
service requires Python v3 and Flask v1.0.0 (or higher versions).

3.1.2.3 APIs

Server-side component APIs:
There is only one REST-full API call for the server-side component in this service, namely
“classify/”. This API call is used for initiating the classification. Once the classification is initiated,
then all necessary communications for executing classification are accomplished through socket
calls between the server-side and client-side components.

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

21

POST classify/

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

22

Client-side component APIs:

There are two REST-full API calls at the client-side component. The first one is used for initializing
the public IP address and the port number of the server (init/) and the second one is used to
initiate the classification at the client side. Socket calls are used for communication purposes
between the server-side and client-side components

POST classify/

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

23

POST init/

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

24

3.1.2.4 Service integration evaluation

Service integration evaluation will be presented in D4.3 [6].

3.1.3 Solution based on Homomorphic Encryption

This solution uses Homomorphic Encryption (HE) in order to build a privacy-preserving neural
network inference solution. This solution uses the CKKS scheme [10] implemented in Microsoft,
open source, SEAL library [11]. The solution takes a pre-trained neural network composed of the
supported layers (Dense, Convolution), and activation functions and provide an encrypted version
for secure inference. The detailed design of this service is presented in D4.1 [1].

3.1.3.1 Service integration evaluation

Service integration evaluation will be presented in D4.3 [6].

3.1.4 Privacy-preserving NN classification based on hybrid approach

The hybrid solution uses both, the HE and 2PC, in order to build a privacy preserving NN
classification framework and maximize the efficiency of classification on deep NN. The solution is
practically generic, namely, it supports different types of DNN (i.e., MLP, CNN, and RNN) with
any number of layers, any number of neurons in each layer and any activation function (from the
set of supported activation functions), while the performance still acceptable (grows linearly with
the DNN’s depth).

We presented a detailed design in D4.1 [1]. In the following subsection we describe how we
integrated and evaluated the service.

3.1.4.1 Service integration evaluation

We evaluated the service integration as depicted in Figure 3. In particular, we developed: (1) an
application (ClientApp) which simulates client’s application (in our case it reads ECG samples
from a file and classify them using the PAPAYA service); (2) the agent (provides basic
cryptographic functionality and service interfaces); and (3) the service (which performs the privacy
preserving classification). Each of this component is implemented as a docker container.
ClientApp and the agent are deployed on a local machine, while the service is deployed on IBM
cloud. More details about the API of each component could be found in D4.1 [1]. We run the
classification flow for all the inputs and everything works as expected.

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

25

Figure 3 Service integration evaluation

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

26

3.2 Collaborative Training of Neural Network
Collaborative training of NN allows multiple participants to perform a ML training collaboratively,
while preserving the privacy of the training data. In the previous version of this document (D4.1
[1]) we presented a complete specification of the service based on Shokri and Shmatikov
approach [12]. Since that, in a course of WP3, we have implemented an additional approach for
privacy preserving training of DNN based on the method presented by Abadi et. al. [13] (presented
in D3.3 [5]). We integrated this solution into the service as well. There are minor changes in almost
all previously presented (in D4.1 [1]) components and APIs. So, we provide a complete
specification of the service in this section.

3.2.1 Main components and their relationships

1. The client side – responsible for performing the following functionalities:
a. NN training
b. Adding Differential Privacy (DP) noise

i. Train local DP model
ii. Noise updates sent to the server

c. Uploading noised gradients or DP weights
d. Downloading the model parameters to/from the centralized server.

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

27

Figure 4: The client agent components

Figure 4 presents the client agent components that will run on the client side (trusted
environment).
2. The centralized server (server side) – will provide the following functionality:

a. Allow participants to define and download the initial model.
b. Aggregate the gradients from the collaborative training participants.

i. Manage updates statistics and decay the less relevant updates
ii. Updates averaging

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

28

c. Allow participants to download the model parameters during the training phase.

Figure 5: The server components

Figure 5 presents the server-side components that will run on PAPAYA K8s cluster. The service
instance will be allocated per training task.

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

29

3.2.2 Behavioral analysis:

Figure 6: Collaborative training - sequence diagram

As shown in Figure 6, the training phase begins when the required minimal number of participants
(as defined in the configuration) requested to join and start the training. Each client will provide a
path to the local dataset to the agent. The agent will perform a NN training locally and upload the
noised gradients or weights of noised model (depending on the chosen approach and
configuration) to the centralized server (located on the PAPAYA cluster). The server will
aggregate the updates to the centralized model. The aggregation techniques can be configured.
The server allows agents to download the updated model. Client agents download the model and
overwrite the local one. The agent proceeds to the training phase on the updated model and so
on. The client agent communicates with the server via REST-API calls. The client app should
communicate with the client agent via REST-API calls.

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

30

3.2.3 Deployment and configuration

The necessary information regarding the deployment and configuration of this service is described
in D4.1 [1].

3.2.4 Implementation constraints

The service (both the client-side and server-side components) is implemented as a REST-full web
service using python2 version 3 and Flask framework. Both client and server document the APIs
via Swagger3.

The server stores the model in a mounted volume within the K8s server.

As mentioned above, the server side will allocate legal tokens per training task and will expect to
receive this token on every request.
The client-side agent expects to receive compiled Keras model.
If the client app chooses to use a differential private local training (based on M. Abadi) approach,
then the service supports only the following optimizers:

- sgd
- adam
- adagrad

In addition, in this approach, the client app should provide the model’s compilation configuration:

- loss
- metrics
- optimizer
- learning rate

These configurations are used in order to recompile the model to privacy preserving model (using
tensorflow/privacy library).

2 https://github.com/encryptogroup/ABY - Release: Oct 19, 2019

3 https://github.com/encryptogroup/ABY - Release: Oct 19, 2019

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

31

3.2.5 APIs

Server-side APIs:

Client agent APIs:

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

32

3.2.6 Service integration evaluation

We executed the complete deployment and training flow and evaluated the entire privacy
preserving training flow on the Swell dataset4 (Kaggle, based on use case 2). In particular, we (1)
uploaded both, the server-side and the client-side containers to the K8s container registry on IBM
cloud; (2) deployed the server-side container on IBM cloud using Papaya platform dashboard; (3)
deployed client-side agent and an application which simulates client’s application on local
machine; and finally (4) executed the entire flow, as depicted in Figure 6. The evaluation results
with respect to accuracy/privacy are presented in D3.3 [5].

3.3 Clustering
3.3.1 Privacy-preserving clustering based on 2PC

In D4.1 [1], Privacy-preserving trajectory clustering based on 2PC was briefly introduced. There
are no further updates for the main components, relationships between main components and
the behavioral analysis subsections in this version. This document consists of updates on
deployment, configuration, implementation constraints and APIs sections. Service integration
evaluation will be presented in D4.3 [6].

3.3.1.1 Deployment and configuration

Deployment. As stated D4.1 [1], the privacy-preserving trajectory clustering based on two-party
computation (2PC) service and consists of two components, namely the client-side and server-
side components. Both components are deployed as Docker containers. Before the deployment,
the server component should have the information of the local IP address (which should be 0.0.0.0
by default because of the use of Flask framework as a RESTful service), local HTTP port and the
local TCP port (any available port numbers, except the reserved ports by Ubuntu operating
system). Note that the local IP address and the TCP port number is required to run ABY server in
the server component.

Configuration. This service does not require any specific configuration for the installed, libraries,
tools and the operating system that will be used for accomplishing the 2PC-based PP clustering.
On the other hand, once the server-side component is deployed to a cloud environment, it will
have a new public IP address and a port number. This newly assigned communication information
should be also stored in the client-side component to execute 2PC computation. Therefore, the
one and only configuration is required for the client-side component, which is realized by using
“init/” API call.

4 https://github.com/encryptogroup/ABY - Release: Oct 19, 2019

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

33

3.3.1.2 Implementation constraints

The privacy-preserving trajectory clustering based on 2PC service uses the latest version of the
ABY framework as a 2PC library. For RESTful Web-service, Python v3 and Flask v1.0.0 (or higher
versions) are used.

3.3.1.3 APIs

Server-side component APIs:

There is only one RESTful API in the server-side component. This API is used for initiating the
ABY based server in the server-side component. All other communications between the client-
side component and the server-side component are realized by using ABY sockets.

POST cluster/

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

34

Client-side component APIs:

There are two RESTful API calls in the client-side component. The first one is used for initializing
the public IP address and the port number of the server (init/) and the second one is used for
initiating the clustering in the client side. While initiating the clustering, the to-be clustered line
segments obtained from the trajectories are uploaded.

POST init/

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

35

POST cluster/

3.3.1.4 Service integration evaluation

Service integration evaluation will be presented in D4.3 [6].

3.3.2 Privacy-preserving clustering based on MinHash

In this section we provide the design of privacy preserving clustering based on 2PC described in
D3.3, based on the MinHash clustering algorithm [14] [15]. The solution implemented uses
Facebook Crypten open source library.

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

36

3.3.2.1 Main components and their relationships

In this scenario there are three actors. First, the client that want information about people travels.
Second, the Orange Business Service (OBS) that host the service’ server. Finally, the Orange
Mobile Network (OMN) that provides the requested data to the service.

This solution has two main components:

1. Server-side component
2. Client-side component

Server-side component:

It consists in the following two modules (Figure 7):

• Agent module. This module is used to communicate with the client agent and the antenna.
Also, the module supervises the computation by invoking the cryptographic module.

• Crypto module. The crypto module provides the 2PC framework for the computations.

Figure 7 Server-side component

Client-side component:

It consists in the following modules (Figure 8Error! Reference source not found.):

• Agent module. The agent module deals with the communications with the server agent
and OMN. It also supervises the computations by invoking the cryptographic module.

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

37

• Crypto module. This module provides the 2PC framework that will be used during the
computations of the clustering.

Figure 8 Client-side component

3.3.2.2 Behavioral Analysis.

The service operates as Figure 9 shows. The client starts by sending a clustering query to the
server (step 1). The server analyses the query and then make the relevant request to OMN that
gather the necessary data (steps 2, 3). The server agent computes the MinHash of the received
data (step 4). Then the server agent encrypts the hashes and proceeds with the computations of
the clusters with 2PC (steps 6, 7). Once the clusters are computed, a check for k-anonymity is
done (steps 8, 9). Finally, the client decrypts and recovers the result (steps 10, 11).

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

38

Figure 9 Trajectory clustering analysis

3.3.2.3 Deployment and configuration

The components described above will be deployed within the platform as Docker containers.

Configuration parameters of the server include: the IP addresses and port numbers of the two
types of clients. In turn, the client should have the server’s IP address and port number.
Requestor and client do not interact with each other.

3.3.2.4 Implementation constraints

The agents are implemented in Python programming language and communicate using a REST
API. The 2PC computations are done using the Facebook’s CrypTen5 open source library.

5 https://github.com/facebookresearch/CrypTen

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

39

3.3.2.5 APIs

Server API:
There are two REST API calls supported by the Server-side component: (1) query; and (2)
request_data. The query call receives the query file from the client and processes it. The
request_data call requests data from the providers. Following is a detailed description of the calls.

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

40

Client API:
There is only one REST API call on the client side. The call is query, it is used to generate and
send a query file to the server.

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

41

3.3.2.6 Service integration evaluation

Service integration evaluation will be presented in D4.3 [6].

3.4 Basic Statistics
3.4.1 Privacy-preserving statistics based on Functional Encryption

This solution uses functional encryption to allow a requestor to compute statistics on users’ mobile
usage. Functional encryption ensures data confidentiality and also that only the computation
agreed by the user can be done. A detailed description of the design is given in D4.1 [1].

3.4.1.1 Service integration evaluation

Service integration evaluation will be presented in D4.3 [6].

3.4.2 Privacy-preserving Counting using Bloom Filters

In this section, we provide the design of the solution for privacy preserving counting using Bloom
filters as described in D3.3 [4]. The implementation of this solution uses Microsoft SEAL for the

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

42

homomorphic computations and Facebook Crypten for the 2PC computations: both are open
source libraries. The main update from D4.1 [1] is the introduction of 2PC for the computation of
the k-anonymity.

3.4.2.1 Main components and their relationships

We give a brief overview of the components to understand the update in the next sections. Full
details are available in D4.1 [1].

The solution consists of three main components:

1. Requestor-side component. This component is composed of two modules:
a. Agent module. The purpose of the agent module is to communicate with server

component.
b. Crypto module. The goal of the crypto module is to provide cryptographic primitives

for the requestor.
2. Server-side component. This component is composed of three modules:

a. Storing module. The purpose of the storing module is to store on the server the
requests sent by the requestor.

b. Operation module. This module compute bloom filters intersections/unions in the
encrypted domain, depending on the request from the requestor.

c. Interface. The goal of the interface module is to deal with communications from the
requestor and the client.

3. Client-side component. This component is composed of two modules:
a. Agent module. The agent module interfaces with the server, collects data from

antennas and invokes the crypto module to encrypt the data.
b. Crypto module. The crypto module provides the cryptographic primitives for the

client.

3.4.2.2 Behavioral analysis

We only give an overview of the behavioral analysis to be able to explain the update. The full
details of the behavioral analysis are available in D4.1 [1].

The service operates in three main phases (see Figure 10):

1. System initialization, including the analytics initialization and the key generation;
2. Encryption phase - used to encrypt the Bloom Filters;
3. Statistics phase, including the computation on encrypted data and the decryption of the

result.

The main update in the new version comes during the Statistics phase. In the previous version,
there was no k-anonymity check before the requestor decryption. Now, before sending the result
to the requestor for decryption, we apply a mask (Step 11). Then the ciphertext is sent to the

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

43

requestor (Step 13). The requestor decrypts it (Step 14). After that, the server and the requestor
check if the value if greater than the anonymity threshold (Step 15, 16), using 2PC. Finally, the
requestor decrypts the final result (Step 17).

Figure 10 Privacy-preserving statistics with Bloom Filters

3.4.2.3 Deployment and configuration

The above-described components will be deployed within the platform as Docker containers.

Configuration parameters of the server include: the IP addresses and port numbers of the two
types of clients, and in turn the clients should have the server’s IP address and port number.
Requestor and client do not interact with each other.

3.4.2.4 Implementation constraints

During the collection of encrypted Bloom filters provided by the client, the server may wait for the
reception of several Bloom Filters (at different times) before applying the statistics operation.

The input Bloom filters must have all the same size so that operations such as intersection could
be defined.

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

44

3.4.2.5 APIs

The APIs are the same, so we refer to D4.1 [1] for the description of this section.

3.4.2.6 Service integration evaluation

Service integration evaluation will be presented in D4.3 [6].

4 Platform Security and Transparency

4.1 IAM
The Identity Access Manager (IAM) carries out the Authentication and Authorization services to
protect the accesses to the PAPAYA platform. In order to do so, a traditional bastion-host pattern
has been applied, which implies the implementation and deployment of different components, not
only for the IAM server itself. Hence this chapter is devoted to describing the IAM component but
also those other complementary components necessary to provide these services. In contrast
with the previous version of this deliverable (D4.1), the following sections of this report focus on
the deployment details of the different components necessary for providing Authentication and
Authorization services within the Papaya platform.

4.1.1 Main components and their relationships

The main IAM components and their relationships with other components of the PAPAYA platform
is described in detail within deliverable D4.1. Just as a reminder on what is described in the
previous version of this document, as shown in the Figure 11, all access to the PAPAYA
framework will be done towards the Security Proxy component, which will contact the IAM to verify
if every access is authenticated and authorized and, if the access is granted, it will be redirected
to the corresponding Computation Component.

Figure 11 IAM and Security Proxy in the PAPAYA Platform

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

45

4.1.2 Deployment and configuration

As mentioned before, this section is devoted to describing the deployment of a set of different
components, not just the IAM server itself. In order to provide the Authentication and Authorization
services for the PAPAYA framework it is necessary to follow each of these steps:

Step 1. IAM deployment (including the DDBB associated)
Step 2. OAuth 2 client configuration
Step 3. Computation Components deployment
Step 4. Security-Proxy deployment

The Figure 12 shows these steps in place:

Figure 12 Deployment steps

4.1.2.1 Step 1 IAM deployment

As the IAM selected is based on a broadly used open source solution, the deployment of the IAM
server can be performed easily using the following command:

$helm install --name keycloak -f keycloak-values.yaml codecentric/keycloak
 NAME: calico-macaw
 LAST DEPLOYED: Thu Mar24 10:32:36 2020
 NAMESPACE: default
 STATUS: DEPLOYED
 RESOURCES:
 ==> v1/ConfigMap
 NAME DATA AGE
 calico-macaw-keycloa-sh 1 0s
 calico-macaw-keycloa-startup 1 0s
 calico-macaw-keycloa-test 1 0s

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

46

 ==> v1/Pod(related)
 NAME READY STATUS RESTARTS AGE
 calico-macaw-keycloa-0 0/1 ContainerCreating 0 0s

==> v1/Secret
 NAME TYPE DATA AGE
 calico-macaw-keycloa-db Opaque 1 0s
 calico-macaw-keycloa-http Opaque 1 0s

 ==> v1/Service
 NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
 calico-macaw-keycloa-headless ClusterIP None <none> 80/TCP,8443/TCP 0s
 calico-macaw-keycloa-http ClusterIP 10.98.100.117 <none> 80/TCP,8443/TCP 0s
 ==> v1/StatefulSet
 NAME READY AGE
 calico-macaw-keycloa 0/1 0s
 NOTES:
 Keycloak can be accessed:
 * Within your cluster, at the following DNS name at port 80:
 calico-macaw-keycloa-http.default.svc.cluster.local
 * From outside the cluster, run these commands in the same shell:
 export POD_NAME=$(kubectl get pods --namespace default -l app.kubernetes.io/instance=calico-macaw -o
jsonpath="{.items[0].metadata.name}")
 echo "Visit http://127.0.0.1:8080 to use Keycloak"
 kubectl port-forward --namespace default $POD_NAME 8080

 Login with the following credentials:
 Username: keycloak

 To retrieve the initial user password run:
 kubectl get secret --namespace default calico-macaw-keycloa-http -o jsonpath="{.data.password}" | base64 --decode;
echo

As result of the execution of the previous command, the whole information or the containers
created and how to access to the IAM is displayed.

4.1.2.2 Step 2. Configure the client

The access from the client side to the platform will be done following an OAuth 2 standard as a
client. Therefore, it is necessary to configure the access of the client on the IAM platform
beforehand. Although in the PAPAYA deployment, this configuration will be automatized using
the appropriate scripts and the client’s configuration details can be consulted in the following link:
https://www.keycloak.org/docs/9.0/server_admin/#_clients

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

47

4.1.2.3 Step 3. Computation Components Deployment

Once the IAM server is in place and the client has been configured properly it is then the turn of
the deployment of all the PAPAYA platform services. Each service deployed can be associated
with one or several entry points that need to be exposed to the exterior of the platform. Although
how Computation Components are deployed within the platform is not the focus of this section
(each Computation Components will have their own deployment plan), the entry points associated
with them will be important. This list of entry points will be used in the following configuration
steps.

4.1.2.4 Step 4. Security-Proxy deployment

At the last step, using the list of entry points obtained previously, the Security-Proxy can be
configured and deployed. In order to do so, it is only necessary to execute the following command:

$helm install --name security-proxy -f security-proxy-values.yaml .

4.1.3 Implementation constraints

All issues and constraints associated with this set of components are described in the previous
version of this document D4.1.

4.1.4 APIs

The API definition of all the services described in this section can be consulted in the following
link: https://www.keycloak.org/docs-api/9.0/rest-api/index.html

4.1.5 Service integration evaluation

The deployment of the whole set of components for providing the Authentication and Authorization
services has been deployed successfully locally but also within the cloud environment provided
for the deployment of the project. Service integration evaluation will be presented in D4.3 [6].

4.2 Auditing
Towards being able to hold stakeholders accountable for their use of the PAPAYA platform and
services, data processing is logged both as part of the platform and locally at agents.

4.2.1 Platform auditing

Our approach to platform auditing is described in Section 5.2.1 of D4.1 [1]. Here, we first provide
an overview and then describe how to evaluate the integration of the platform auditing into the
PAPAYA platform.

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

48

4.2.1.1 Overview

We plan to deploy platform auditing in two stages:

1. In the first stage (due M30, as part of the intermediate version of the platform milestone),
we deploy the commonly used Elastic stack in the platform's K8s cluster.

2. In the second stage due M36, we improve the security of the setup by making the resulting
logs (i) tamper proof and (ii) verifiable—in terms of authenticity and time—by third parties.

As part of the Elastic stack, we will in the first stage use the Filebeat6, Elasticsearch7, and Kibana8
components. Containers that run the analytics services (Section 3) log their operations to
standard output, and Filebeat is configured in K8s (as part of pods) to collect all that output and
send it to the Elasticsearch instances we run as part of the platform for storage. From the platform
dashboard, administrators and platform users will be able to access an instance of Kibana to view
their logs stored in Elasticsearch. One significant open question is how to deal with access control
to logs in Kibana9. Our goal is to have this operational as part of the intermediate version of the
platform in M30.

The second stage will involve one additional component of the Elastic stack: Logstash10. Logstash
is a log pre-processor that receives logs from Filebeat, performs some processing, and then
forwards them to Elasticsearch. We will create a custom Logstash component based on an
existing secure logging scheme built for the Elastic stack [16]. The component will efficiently sign
the logs such that they can be shared and verified by third parties. The figure below summarizes
the flow of logging data for platform auditing and the involved components.

Figure 13: Platform auditing components and the flow of logs.

6 https://www.elastic.co/beats/filebeat
7 https://www.elastic.co/elasticsearch/
8 https://www.elastic.co/kibana
9 This used to be a paid feature of the Elastic stack but rudimentary functionality is now part of the open
source components, see https://www.elastic.co/blog/security-for-elasticsearch-is-now-free. Before M30, we
need to decide on using the limited free functionality of paying for the full functionality.
10 https://www.elastic.co/logstash

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

49

4.2.1.2 Integration evaluation

We will validate the integration of platform auditing as follows for the first stage:

1. Create a new user for the platform.
2. Create one or more instances of analytic services.
3. For at least one service, run its agent and perform some analytics.
4. As the newly created user, access Kibana through the platform dashboard. Verify that all

expected logs are available.
5. Perform the same verification as in 4, but for another user, verifying that it cannot see the

newly generated logs.
6. Perform the same verification as in 4, but for the platform administrator, ensuring that it

can see all logs.

For the second stage, there are two additional steps:

7. Repeat steps 4 and 6, but verify the completeness of the logs: do the logged events
capture all relevant information for the logs to be useful for auditing and ultimately
accountability purposes?

8. For a subset of logs in steps 4 and 6, extract the authenticity data and verify it.

4.2.2 Agent auditing

Our approach to platform auditing is described in Section 5.2.2 of D4.1 [1]. Here, we first provide
an overview and then describe how to evaluate the integration of the agent auditing into the
PAPAYA platform.

4.2.2.1 Overview

Agents log their processing to standard out, allowing the container environment (such as Docker)
to capture them. Quickly viewing agent logs generated by the container running an analytics agent
is possible through the Agent Dashboard, see Section 5.2. The use the Agent Dashboard is mainly
intended during the development phase of using the PAPAYA platform. During the operational
phase, agent logs can use the same Elastic stack as the platform auditing.

4.2.2.2 Integration evaluation

See the Agent Dashboard in Section 5.2 for the development stage. For the re-use of the Elastic
components used for platform auditing, we plan to produce a small proof-of-concept where logs
generated by the agent is shown in an instance of Kibana running on localhost. Further evaluation
is pointless; most PAPAYA users will already be operating some form of logging infrastructure.
By showing that the widely used Elastic stack can be used we demonstrate that the PAPAYA
platform can be operationalized as part of a larger existing environment.

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

50

4.3 Key Manager
The Key Manager (KM) component is devoted to providing a collateral service of the use of a
privacy-preserving platform, carrying out the management of the cryptographic material during
the whole lifecycle of the PAPAYA project in the cases where it will be required. In the previous
version of this report, it was described the architecture and a detailed design of the Key Manager.
Nevertheless, in the following sections of this document are focus on providing the deployment
details necessary to use this service and updating that information that have changed since the
last report.

4.3.1 Main components and their relationships

The main components and the integration of them within the PAPAYA platform is described in the
section 1.1 of the deliverable D4.1 [1].

4.3.2 Deployment and configuration

In order to facilitate the deployment of the Key Manager server, it is available in a docker image.
Therefore, to deploy a KM container within the PAPAYA framework it will only be necessary to
execute the following command:

$ docker run -p 9311:9311 --name key-manager -t de.icr.io/papaya-de/key-manager

In addition, the KM client developed to facilitate the integration with other components is available
for different programming languages and frameworks, such as: C Sharp, Java, JavaScript,
Python, etc.

4.3.3 Implementation constraints

Section 1.1.18 of deliverable D4.1 [1] describes in detail the implementation constraints
associated with the implementation of this component.

4.3.4 APIs

Although in the previous version of this report it was detailed the API interfaces used for the Key
Manger, some small changes on the interface has been done since them. Hence, the final REST
API that will allow to store and to retrieve the cryptographic material is as follows:

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

51

POST/secrets

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

52

GET/secrets

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

53

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

54

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

55

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

56

GET/secrets/{uuid}

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

57

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

58

PUT/secrets/{uuid}

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

59

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

60

DELETE/secrets/{uuid}

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

61

GET/secrets{uuide}/payload

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

62

4.3.5 Integration evaluation

This set of components has been designed and implemented to give support to other components
and then help them to be integrated within the PAPAYA platform. Therefore, the Key Manager
Service will be integrated in some of the use cases whenever necessary. Hence the evaluation
of this component will be included with the specific evaluation plans where this set of components
will be integrated.

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

63

5 PAPAYA Dashboards
There are two dashboards in PAPAYA, namely the platform dashboard and the agent dashboard.
The platform and agent dashboards are, as the name suggests, tied to the respective architectural
components and their respective back-ends provide for the dashboards. The dashboards are
accessed through web views in a web browser by their respective target users.

5.1 Platform Dashboard
Platform dashboard implemented as a Web application hosted in a container that runs on the
PAPAYA’s K8s cluster. The major differences, with respect to D4.1, in this section are the
implementation constrains (due to internal security constrains, since the platform are deployed on
the internal IBM’s account). The dashboard will provide the following functionality:

1. Present a list of services provided by the platform (Service’s Catalog)
2. Add/Edit/Delete services.
3. Create/Deploy/Delete application (a dedicated instance of each of the provided

services).
4. Allow application’s owners to monitor the flow of the application by presenting

operational logs.

5.1.1 Main components and their relationships

As described in the previous deliverable (D4.1 [1]).

5.1.2 Deployment and configuration

As described in the previous deliverable (D4.1 [1]).

5.1.3 Implementation constraints

The dashboard assumes that the user that sends a request is already authenticated (by Identity
and Access Management (IAM) mechanism described in Section 4.1).

The platform dashboard supports deployment of three kinds of services:
• Rest server – service which communicates via https only
• Rest and TCP server – service which communicates via https and socket
• TCP server – service which communicates via socket only

Due to internal IBM’s security constrains the platform dashboard is limited to 50 TCP channels.

5.1.4 APIs

As described in the previous deliverable D4.1.

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

64

5.1.5 Integration evaluation

We deployed the platform dashboard on the PAPAYA’s K8s server. Then we registered a few
services and deployed them using the dashboard. In particular, we deployed the service for
Privacy-preserving NN classification based on hybrid approach described in Section 3.1.4, and
the service for Collaborative Training of Neural Network described in the Section 3.2 (both, the
server-side and the client-side), and run the entire flow. In this way we evaluated the functionalities
1-3 listed in the Section 5.1. The evaluation of functionality number 4 (related to presenting
operational logs to the application owners) will be presented in D4.3 [6].

5.2 Agent Dashboard
The agent dashboard is briefly described in Section 6.2 of D4.1 [1]. Here, we first provide an
overview and then describe how to evaluate the integration of the agent dashboard.

5.2.1 Overview

The agent dashboard is primarily intended to be used during the development phase of a platform
client integrating the use of an analytics agent into its systems. There may be some limited use
also operationally. The agent dashboard consists of a minimal backend (command line executed)
intended to be run on the same system as the agent container and a web-based front-end. Once
run, the dashboard opens up a browser interface on localhost that shows the configuration of the
run agent and its logs (re-using the visualizations from the Data Subject Toolbox, see Section 6).

5.2.2 Integration evaluation

Do the following steps:
1. Download an agent from the PAPAYA platform.
2. Start the agent in a Docker container.
3. Start the agent dashboard, providing the name of the Docker container from step 2.
4. Open the address printed in the terminal in your browser.
5. View the configuration of the agent in the browser.
6. Perform some analytics with the agent.
7. View the logs of the agent in the browser.

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

65

6 Data Subject Toolbox
Data protection by design is a key consideration of any data controller and data processor since
the GDPR came into effect. The use of complex cryptographic systems—such as privacy
preserving data analytics—pose a challenge for data controllers and processors when dealing
with data subjects. In particular, when it comes to the rights to data subjects to be informed about
how their personal data is processed and to remain in control of this processing. Towards
addressing these challenges, the PAPAYA framework includes a data subject toolbox with a
number of small, independent tools that can be used by data controllers and data processors in
their interaction with data subjects.

6.1 Explaining Privacy-preserving Analytics
The components for explaining privacy-preserving analytics were described in Section 7.1 of
D4.1 [1] as well as in D3.2 [17]. Here, we first provide an overview and then describe how to
evaluate the integration of the components.

6.1.1 Overview

The components can be split in two ways. First, there are independent components for explaining
risks to data subjects. These components are generic (in the sense that they are applicable for
any privacy-preserving analytic) and tied to the output of the CNIL PIA tool11, which we have also
improved12. These components and the modifications are explained in detail in D3.4 [18]. The
other type of component aims to explain in easy terms and with usable visualizations how a
specific privacy-preserving analytic works. These components are tailored to only one or a
particular group of privacy-preserving analytics (e.g., those based on partial or fully homomorphic
encryption). These are also explained in detail in D3.4 [18], with a focus on the design of their
user interfaces.

Each component mentioned above are independent of each other, enabling a data controller or
processor to pick the relevant components for their use of the PAPAYA platform. The components
are implemented (some done, others scheduled for M24-M30) as React Native13 components.
Such components can easily be integrated into existing iOS and Android apps. This should allow
the data controller or data processor, as part of a mobile app they provide to data subjects
(~users) of their services, to easily integrate the relevant components to explain how the data
processing using privacy-preserving analytics works and any associated risks to data subjects.

6.1.2 Integration evaluation

For the components that explain risk:

11 https://www.cnil.fr/en/privacy-impact-assessment-pia
12 https://github.com/papaya-h2020/pia , modifications released as open source
13 https://reactnative.dev/

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

66

1. Using the modified CNIL PIA tool, perform a PIA up to and including the risk assessment
with respect to the six risk categories in the modified tool.

2. Export a JSON-file of the PIA from within the CNIL PIA tool.
3. Use the JSON as input to one of the risk components in React Native. Verify that the

communicated risk assessments are the same as specified in the PIA from step 1.

The components that explain a privacy-preserving analytic are not integrated with any other
component, but rather integrated into an existing mobile app.

6.2 Data Disclosure Visualization Tool
The Data Disclosure Visualization Tool is briefly described in Section 7.2 of D4.1 [1]. Here, we
first provide an overview and then describe how to evaluate the integration of the tool in an existing
mobile app.

6.2.1 Overview

The goal of the tool is to provide a quick visualization for data subjects of what personal data (by
attribute, such as first name, email, and blood type) has been disclosed concerning the data
subject to which entities (data processors or data controllers). The design of the visualization is
based on the Data Track14, an open source tool from the EU FP7 project A4Cloud. This
visualization should be appropriate for use in a mobile app and will be a single React Native
component. The component will be configured by a JSON file that describes the disclosed data
attributes and their recipients.

6.2.2 Integration evaluation

There is no integration with other components from PAPAYA. The integration should be evaluated
on the ease of integration with an existing mobile app from a developer’s perspective.

6.3 Annotated Log View Tool
The Annotated Log View Tool is briefly described in Section 7.3 of D4.1 [1]. Here, we first provide
an overview and then describe how to evaluate the integration of the tool.

6.3.1 Overview

The goal of the tool is to make data processing, as it relates to privacy-preserving data analytics,
more transparent towards data subjects. The tool consists of two components: one user-interface
component and a log annotator component. The log annotator component is used by the data
processor or data controller using a platform agent to create annotated logs of its data processing
using the agent. The annotated logs are then provided to the user-interface component that
visualizes the annotated log. The visualization is based on the “timeline” view of the Data Track,

14 https://github.com/pylls/datatrack

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

67

but ported to a mobile interface. How the annotated log is stored and provided to the UI
component is unspecified, it depends on how the Annotated Log View Tool is used. The
implementation of the UI component will be as a single React Native component, and the log
annotator component will be provided as a function in several programming languages, including
Java and Kotlin for mobile development targeting Android.

6.3.2 Integration evaluation

Verify the integration as follows:
1. Setup an analytics agent.
2. In the code that instructs the agent to perform some analytics, add a corresponding call to

the log annotator component to produce a log entry. Store all log entries in a data structure
that maps data subjects to relevant log entries.

In an existing mobile app, integrate the UI component. When the UI component is triggered,
supply it with the relevant log entries for the data subject stored in step 2.

6.4 Privacy Engine
6.4.1 Main components and their relationships

The deliverable D3.2 [17] details the design and architecture description of the PE and its sub-
components. No significant changes have occurred on the design or architecture of this
components since then. In addition, in the previous version of this document, the relationships
between the Privacy Engine components with the rest of the PAPAYA framework components
and a full detailed description of the interfaces used by the PE was detailed. Nevertheless, the
following sections of this document are focused on the description of the deployment and
configuration of the different set of components of the PE.

6.4.2 Deployment and configuration

This section details how to deploy the different sub-components of the Privacy Engine. Following
a classical approach these sub-components can be classified into back-end and front-end
component classification In addition and just as a reminder, the functionality of the Privacy Engine
can be also divided into: Privacy Preferences Manager (PPM) and Data Subject Rights Manager
(DSRM). So, the following sections describe how to deploy the Privacy Engine components
classify by: Back-End Servers and Front-End Interfaces.

6.4.2.1 Back-End Servers

The back-end components have been implemented to be containered and therefore, easily
deployed using dockers. As mentioned before, two different images have been developed, one
for the PPM functionality and other for the DSRM. For the PPM deployment it will be necessary
to execute the following command:

$ docker run -p 8080:8080 de.icr.io/papaya-de/privacy_engine-ppm-server:latest

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

68

While for deploying a DSRM container, it will be as follows:
$ docker run -p 8080:8080 de.icr.io/papaya-de/privacy_engine-dsrm-server:latest

6.4.2.2 Front-End Interfaces

The front-end interfaces have been developed to be included in mobile applications. In order to
maximize the possible platforms where these interfaces can be integrated, they have been
developed using the NativeScript framework15. The use of this popular and broadly used
framework facilitates not only the development but also the integration within the final applications
used for the PAPAYA pilots. How to integrate these interfaces with the final pilots applications
can be consulted in the following link:

https://www.nativescript.org/faq/how-do-i-add-nativescript-to-an-existing-ios-or-android-app

6.4.3 Implementation constraints

There are no further implementation constraints since this was reported in the previous version
of this document.

6.4.4 APIs

The whole API of the different components of the Privacy Engine can be consulted in the
deliverable D3.2 [17].

6.4.5 Integration evaluation

The Privacy Engine will be included in two different Use Cases: US2 - Privacy-preserving stress
management and US3 - Privacy-preserving mobility analytics. Thereby PE evaluation will be
included in the plan developed for the evaluation of both Use Cases.

15 https://www.nativescript.org/

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

69

7 Platform Deployment
There are minor changes to the deployment process (in comparison to D4.1 [1]). In order to make
the description self-contained we describe the whole deployment process in this section.

7.1 Platform initialization and platform dashboard deployment
For the proof of concept (PoC) usage, the platform is deployed on IBM’s cloud service. The
platform administrator (IBM) created an account of K8s service and allocated the required
resources for the Kubernetes cluster. In addition, the platform administrator allocated the following
required external services:

1. Container Registry (CR). The platform administrator created single namespaces, papaya-de.
2. Permissions Provided to the platform users
3. Elasticsearch and Kibana internal instance.

The platform administrator created the following permission groups:

1. Platform administrator

a. Allocate resources on the Kubernetes cluster
b. Allocate/Create external services
c. Admin access to CR

2. Service providers
a. Active access to the CR
b. If the service requires integration/communication with an external service, appropriate

accounts should be created or allocated.
3. Platform Clients

a. Should be able to download only the agent side container from the CR

The platform administrator deployed the Platform Dashboard using yaml deployment file. Service
providers and platform clients can use it to deploy/use the services.

To support auditing, the platform administrator will execute Loggingbeat as Deamonset on the
Kubernetes cluster and connect it to the Elasticsearch instance.

7.2 Service upload and deployment
This section describes the steps needed in order to upload or use a service. For the PoC usage
we use a Container Registry Provided by IBM Cloud. The steps are divided into two phases: (1)
uploading phase; and (2) usage-execution phase.

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

70

The following steps are common for both phases:

1. Install the IBM Cloud CLI16
2. Install the Docker CLI 17
3. Install the Container Registry plug-in.

ibmcloud plugin install container-registry -r Bluemix
4. Log in to your IBM Cloud account.

ibmcloud login -a https://cloud.ibm.com

The uploading phase will be done by the service provider user and it consists of the following
steps:

1. Log your local Docker deamon into the IBM Cloud CR ibmcloud cr login
2. Create two images: server side and client-side agent. The server-side container will run on

papaya’s K8s cluster. The client-side agent will run on the client’s side. Instructions on how to
create the Docker image can be found in the following link:

https://docs.docker.com/develop/develop-images/baseimages/

3. Upload each image to the appropriate namespace on the CR for the service images use:

docker tag <local container name> de.icr.io/papaya-de/<my_repository>:<my_tag>
docker push de.icr.io/ papaya-de /<my_repository>:<my_tag>

More details and CR commands can be found in Kubernetes documentation18.

4. The service provider user (i.e. IBM, ORANGE, EUROCOM) will add a new service to the
services catalog on the Platform dashboard (https://platform.papaya.eu-
de.containers.appdomain.cloud), while specifying all required fields and describing in details
the service’s flow and requirements.

The usage-execution flow will consist of the following steps:

1. The platform client will login to the Platform dashboard

(https://platform.papaya.eu-de.containers.appdomain.cloud/auth/).
2. The client will select the tab of services catalog and choose the service of interest.
3. The client will provide a configuration file if the service requires so.
4. The client will download the client-side agent image by using the following commands:

16 https://cloud.ibm.com/docs/cli?topic=cloud-cli-getting-started#idt-prereq
17 https://docs.docker.com/install/
18 https://cloud.ibm.com/kubernetes/registry/main/start

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

71

ibmcloud cr login
docker pull <image name>

Where the <image name> is presented in the “services catalog” view on a platform dashboard
under the “Agent Side Container” name and will be structured of the following:

de.icr.io/papaya-de/<image>:<tag>

5. After the services are deployed on the k8s cluster (by the platform dashboard application), the
platform will present the url of the deployed service for the https communication or provide a
cluster IP and port for TCP (socket) communication, For example:

SERVER_URL=https://29dr4d.papaya.eu-de.containers.appdomain.cloud
SERVER_TCP_PORT=32067
SERVER_IP=158.177.182.219

In addition, the platform dashboard provides the option to download the file (env file) that will
contain these parameters (accordingly to the communication protocol with the service). The
client administrator should be able to provide this file to the client agent, based on how the
agent expects to receive these parameters. Possible ways of doing that are as follows:

a. Provide the env file as env. variables for the client agent execution.

docker run with an --env-file <file name>

b. Read the env file by the client’s application and provide it to the agent side within the
initiation step. Meaning that the agent side will provide INIT API and will expect to
receive all essential parameters in order to communicate with appropriate server side.

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

72

8 Conclusions
In this deliverable, we presented modifications and extensions to the platform functional design,
architecture and deployment presented in D4.1 [1]. Thus, this deliverable completes the
specification presented in D4.1 [1]. We described in detail the core platform services dealing with
privacy-preserving computations as well as the services responsible to ensure data privacy,
security, and transparency of all the processes while operating the platform. We explained how
different services can be integrated into the platform in a way that they will be
interoperable/compatible with each other and could work together in the integrated platform. In
particular, by using k8s, we show that the analytics are possible to run using modern cloud
environments; by adding Identity and Access management (IAM), we ensure that access to the
analytics can be properly authenticated and authorized; by adding auditing mechanisms, we
ensure that the analytics generate appropriate logging information.

We also presented the design of platform dashboards that will provide UI, configuration, and
visualization functionality. Finally, we described how we deployed some of the services and how
we evaluated their integration.

In next version of this document (D4.3 [6]) we plan to provide the full description of incomplete
services, missing evaluation results, and changes to the current design that maybe be required
after the platform evaluation in WP5.

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

73

9 References

[1] B. Rozenberg, R. Shmelkin, B. Bozdemir, O. Ermis, M. Önen, M. Barham, M. Azraoui, S.

Canard, B. Vialla and T. Pulls, "D4.1-Functional Design and Platform Architecture".
[2] S. Fischer-Hübner, B. Kane, J. S. Pettersson, T. Pulls, L. Iwaya, L. Fritsch, B. Rozenberg,

R. Shmelkin, A. Palomares Perez, N. Ituarte Aranda and J. Carlos, D2.2 - Requirements
Specification, 2019.

[3] B. Bozdemir, O. Ermis, M. Önen, M. Barham, M. Azraoui, S. Canard, B. Vialla, B.
Rozenberg and R. Shmelkin, D3.1 - Preliminary Design of Privacy Preserving Data
Analytics, 2019.

[4] S. Canard, B. Vialla, B. Bozdemir, O. Ermis, M. Önen, M. Barham, B. Rozenberg, R.
Shmelkin, I. Adir and R. Masalha, D3.3 - Complete Specification and Implementation of
Privacy preserving Data Analytics, 2020.

[5] S. Canard, B. Vialla, B. Bozdemir, O. Ermis, M. Önen, M. Barham, M. Azraoui, B.
Rozenberg and R. Shmelkin, D3.3 - Complete Specification and Implementation of Privacy
preserving Data Analytics, 2020.

[6] B. Rozenberg, R. Shmelkin, B. Bozdemir, O. Ermis, M. Önen, S. Canard, B. Vialla and T.
Pulls, "D4.3 Final report on platform implementation and PETs integration," To be
submitted in 2021.

[7] B. Zvika, G. Craig and V. Vinod, "Fully Homomorphic Encryption without
Bootstrapping".

[8] Z. Brakerski, "Fully Homomorphic Encryption without Modulus Switching from Classical
GapSVP," in Annual Cryptology Conference, 2012.

[9] J. Fan and F. Vercauteren, "Somewhat Practical Fully Homomorphic Encryption,"
Cryptology ePrint Archive, vol. Report 2012/144, 2012.

[10] J. H. Cheon, A. Kim, M. Kim and Y. Song, "Homomorphic encryption for arithmetic of
approximate numbers," in International Conference on the Theory and Application of
Cryptology and Information Security, Hong Kong, China, 2017.

[11] Microsoft Research, Redmond, WA., Microsoft SEAL, :
https://github.com/Microsoft/SEAL, 2018.

[12] R. Shokri and V. Shmatikiv, "Privacy-preserving deep learning," in 53rd Annual Allerton
Conference on Communication, Control, and Computing, Allerton, 2015.

[13] M. Abadi, A. Chu, I. Goodfellow, B. H. McMahan, I. Mironov, K. Talwar and L. Zhang,
"Deep learning with differential privacy," in the 2016 ACM SIGSAC Conference on
Computer and Communications Security, 2016.

[14] C. C. a. A. M. F. Tom Bohman, "Min-Wise Independent Linear Permutations," Electr. J.
Comb., vol. 7, 2000.

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

74

[15] Y. Z. a. M. R.-N. Maede Rayatidamavandi, "A Comparison of Hash-Based Methods for
Trajectory Clustering," 15th {IEEE} Intl Conf on Dependable, Autonomic and Secure
Computing, pp. 107-112, 2017.

[16] T. Pulls and D. Rasmus, "Steady: A Simple End-to-End Secure Logging System,"
https://eprint.iacr.org/2018/737, 2018.

[17] T. Pulls, L. Fritsch, L. Iwaya, F. Karegar, A. Palomares and J. C. Prez Ban, "D3.2 - Risk
Management Artefacts for Increased Transparency," PAPAYA report document, 2019.

[18] S. Fischer-H ̈ubner, M. T. Beckerle, J. S. .̈ Pettersson and P. Murmann, "D3.4 - Transparent
Privacy preserving Data Analytics," PAPAYA report document, 2020.

[19] S. Halevi, "HElib," [Online]. Available: https://github.com/homenc/HElib.
[20] "JustGarble," [Online]. Available: https://github.com/irdan/justGarble.
[21] C. r. a. O. S. University, "libOTe," [Online]. Available: https://github.com/osu-

crypto/libOTe.
[22] N. Smart and F. Vercauteren, "fully Homomorphic SIMD Operations".
[23] wiki, "Garbled circuits," [Online]. Available: https://en.wikipedia.org/wiki/Garbled_circuit.
[24] wiki, "Oblivious transfer," [Online]. Available:

https://en.wikipedia.org/wiki/Oblivious_transfer.
[25] F. Chollet, "Keras," [Online]. Available: https://keras.io/.
[26] M. Abdalla, F. Bourse, A. De Caro and D. Poincheval, "Simple Functional Encryption

Schemes for Inner Products," in IACR International Workshop on Public Key
Cryptography, 2015.

[27] M. Abdalla, D. Catalano, D. Fiore, R. Gay and B. Ursu, "Multi-Input Functional
Encryption for Inner Products: Function-Hiding Realizations and Constructions Without
Pairings," in Annual International Cryptology Conference, 2018.

[28] S. Agrawal, B. Libert and D. Stehlé, "Fully Secure Functional Encryption for Inner
Products, from Standard Assumptions," in Annual International Cryptology Conference,
2016.

[29] J. Chotard, E. D. Sans, R. Gay, D. H. Phan and D. Pointcheval, "Decentralized Multi-Client
Functional Encryption for Inner Product," in International Conference on the Theory and
Application of Cryptology and Information Security, 2018.

[30] E. D. Sans, R. Gay and D. Pointcheval, "Reading in the Dark: Classifying Encrypted Digits
with Functional Encryption," IACR Cryptology ePrint Archive, 2018.

[31] C. E. Z. Baltico, D. Catalano, D. Fiore and R. Gay, "Practical Functional Encryption for
Quadratic Functions with Applications to Predicate Encryption," in Annual International
Cryptology Conference, 2017.

Project No. 786767

D4.2 – PROGRESS REPORT ON
PLATFORM IMPLEMENTATION AND
PETS INTEGRATION
Dissemination Level – PU

75

[32] J.-G. L. a. J. H. a. K.-Y. Whang, "Trajectory Clustering: A Partition-and-Group
Framework," in SIGMOD '07 Proceedings of the 2007 ACM SIGMOD international
conference on Management of data, Beijing, China , 2007.

[33] B. Rozenberg, R. Shmelkin, B. Bozdemir, O. Ermis, M. Önen, M. Barham, M. Azraoui, S.
Canard, B. Vialla and T. Pulls, D4.2 - Progress report on platform implementation and
PETs integration, 2020.

[34] Y. Ishai, J. Kilian, K. Nissim and E. Petrank:, "Extending Oblivious Transfers Efficiently,"
in CRYPTO, 2003.

[35] chiraag, "Gazelle MPC," [Online]. Available:
https://github.com/chiraag/gazelle_mpc/tree/master/src/lib.

[36] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and
Statistics), Springer, 2006.

[37] S. G. M. M. M. A. a. S. C. Eleonora Ciceri, D2.1: Use Cases and Requirements. PAPAYA
Deliverable D2.1, 2019.

