

The research leading to these results has received funding from the European Union’s Horizon 2020 Research and
Innovation Programme, through the PAPAYA project, under Grant Agreement No. 786767. The content and results of this
deliverable reflect the view of the consortium only. The Research Executive Agency is not responsible for any use that
may be made of the information it contains.

D4.1 – FUNCTIONAL DESIGN AND PLATFORM
ARCHITECTURE

Work Package WP 4, Platform Design and Development

Lead Author Boris Rozenberg, Ron Shmelkin, Muhammad Barham (IBM)

Contributing Author(s)

Beyza Bozdemir, Orhan Ermis, Melek Önen (EURC)
Monir Azraoui, Sebastien Canard, Bastien Vialla (ORA)
Angel Palomares Perez (ATOS)
Tobias Pulls (KAU)

Reviewers
Sebastien Canard (ORA)

Angel Palomares Perez (ATOS)

Due date 31.07.2019

Date 31.07.2019

Version 1.0

Dissemination Level PU (Public)

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

2

Revision History

Revision Date Editor Notes

0.1 03.04.2019 Ron Shmelkin (IBM) ToC

0.2 16.04.2019 Tobias Pulls (KAU) ToC update, sketch of dashboards and
auditing

0.3 03.06.2019 Orhan Ermis, Melek
Önen (EURC)

EURC’s contribution

0.4 24.06.2019 Boris Rozenberg (IBM) Integrate partners’ inputs

0.5 24.06.2019 Monir Azraoui, Sébastien
Canard, Bastien Vialla
(ORA)

ORA’s contribution

0.6 26.06.2019 Boris Rozenberg,

Ron Shmelkin (IBM)

Comments on partners’ inputs

0.7 3.07.2019 Boris Rozenberg (IBM) Integrate partners’ inputs and review

0.8 8.07.2019 Boris Rozenberg (IBM) Integrate partners’ additional inputs and
review – version for the 1st internal review

0.9 24.07.2019 All contributing authors Address comments from the 1st internal
review – version for the 2nd internal review

0.10 29.07.2019 All contributing authors Address comments from the 2nd internal
review

1.0 31.07.2019 Beyza Bozdemir (EURC) Quality check

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

3

Table of Contents

Executive Summary ... 7

Glossary of Terms .. 9

1 Introduction ..11

1.1 Purpose and Scope ...11

1.2 Structure of the Document ...11

2 Stakeholders and Usage Scenarios ...12

3 Platform Architecture ...16

4 Platform Services ...20

4.1 Apply Neural Network Model ...20

4.1.1 Privacy-preserving NN classification based on 2PC ...20

4.1.2 Privacy-preserving NN classification based on PHE ..26

4.1.3 Solution based on Fully Homomorphic Encryption ...33

4.1.4 Privacy-preserving NN classification based on hybrid approach44

4.2 Collaborative Training of Neural Network ...58

4.2.1 Main components and their relationships ...58

4.2.2 Behavioral analysis: ...59

4.2.3 Deployment and configuration ...60

4.2.4 Implementation constraints ..61

4.2.5 APIs ...63

4.3 Clustering ..71

4.3.1 Privacy-preserving clustering based on PHE ...71

4.4 Basic Statistics ..73

4.4.1 Privacy-preserving statistics based on Functional Encryption73

4.4.2 Privacy-preserving Counting using Bloom Filters ...80

5 Platform Security and Transparency ..85

5.1 IAM ..85

5.1.1 Main components and their relationships ...85

5.1.2 Deployment and configuration ...87

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

4

5.1.3 Implementation constraints ..89

5.1.4 APIs ...89

5.2 Auditing ...89

5.2.1 Platform auditing ..89

5.2.2 Agent auditing ..92

5.3 Key Manager ...92

5.3.1 Main components and their relationships ...92

5.3.2 Deployment and configuration ...94

5.3.3 Implementation constraints ..95

5.3.4 APIs ...95

6 PAPAYA Dashboards .. 106

6.1 Platform Dashboard ... 106

6.1.1 Main components and their relationships ... 106

6.1.2 Deployment and configuration ... 107

6.1.3 Implementation constraints .. 108

6.1.4 APIs ... 108

6.2 Agent Dashboard ... 108

6.2.1 Main components and their relationships ... 108

6.2.2 Deployment and configuration ... 108

6.2.3 Implementation constraints .. 109

6.2.4 APIs ... 109

7 Data Subject Toolbox ... 110

7.1 Explaining Privacy-preserving Analytics... 110

7.1.1 Main components and their relationships ... 110

7.1.2 Deployment and configuration ... 110

7.1.3 Implementation constraints .. 111

7.2 Data Disclosure Visualization Tool ... 111

7.2.1 Main components and their relationships ... 111

7.2.2 Deployment and configuration ... 111

7.2.3 Implementation constraints .. 111

7.3 Annotated Log View Tool ... 111

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

5

7.3.1 Main components and their relationships ... 111

7.3.2 Deployment and configuration ... 112

7.3.3 Implementation constraints .. 112

7.3.4 APIs ... 112

7.4 Privacy Engine ... 113

7.4.1 Main components and their relationships ... 113

7.4.2 Deployment and configuration ... 115

7.4.3 Implementation constraints .. 115

7.4.4 APIs ... 115

8 Platform Deployment ... 125

8.1 Platform initialization and platform dashboard deployment 125

8.2 Service upload and deployment ... 126

9 Platform Integration - Evaluation .. 129

10 Conclusions ... 130

11 References .. 131

List of Figures

Figure 1: PAPAYA Generic Usage Scenarios ... 15
Figure 2: PAPAYA Platform Architecture ... 17
Figure 3: Topology of server-side component ... 21
Figure 4: Topology of client-side component ... 21
Figure 5: Initialization of client information into the server ... 23
Figure 6: NN Classification by using 2PC .. 23
Figure 7: POST / init REST API call for server initialization ... 25
Figure 8: POST / classify REST API call for classification ... 26
Figure 9: Topology of server-side components.. 27
Figure 10: Topology of client-side components ... 27
Figure 11: Server Initialization ... 29
Figure 12: Classification of the input .. 29
Figure 13: Secure Square Computation .. 30
Figure 14: POST / init REST API call ... 31
Figure 15: POST / classify REST API call ... 32
Figure 16: POST / securesquare REST API .. 33
Figure 17: Topology of server-side modules .. 34
Figure 18: Topology of company-side modules ... 34
Figure 19: Topology of client-side modules ... 35

file://///Users/orhanermis/Desktop/20190731_PAPAYA_D.4.1_Platform_Design_and_Development.docx%23_Toc15480034
file://///Users/orhanermis/Desktop/20190731_PAPAYA_D.4.1_Platform_Design_and_Development.docx%23_Toc15480035
file://///Users/orhanermis/Desktop/20190731_PAPAYA_D.4.1_Platform_Design_and_Development.docx%23_Toc15480036

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

6

Figure 20: Sequence diagram of the initialization .. 36
Figure 21: Sequence diagram of the key generation. .. 37
Figure 22: Sequence diagram of the classification phase. .. 38
Figure 23: Server-side components – topology ... 46
Figure 24: Client-side component – topology .. 47
Figure 25: Key generation – sequence diagram .. 49
Figure 26: Initialization - sequence diagram .. 50
Figure 27: Classify vector - sequence diagram.. 51
Figure 28: The client agent components .. 58
Figure 29: The server components .. 59
Figure 30: Collaborative training - sequence diagram ... 60
Figure 31: Privacy-preserving Trajectory Clustering .. 73
Figure 32: Server-side component ... 74
Figure 33: Client-side component .. 75
Figure 34: Requestor-side component ... 75
Figure 35: Initialization (stats) .. 77
Figure 36: Statistics phase ... 78
Figure 37: Server-side component ... 80
Figure 38: Requestor-side component ... 81
Figure 39: Client-side component .. 81
Figure 40: Privacy-preserving statistics with Bloom Filters .. 83
Figure 41: IAM and Security Proxy in the PAPAYA Platform .. 86
Figure 42: Communication flow requesting a service to the PAPAYA platform 87
Figure 43: Each Kubernetes node runs an Audit Agent (AA) that transports the logs generated by services

on the node to one or more Auditing Collectors (AC). The Platform Dashboard reads logs from
AC and makes them available to Platform Dashboard users. ... 90

Figure 44: Key Manager components and their integration in PAPAYA. .. 94
Figure 45: Preliminary platform dashboard design .. 107
Figure 46: Privacy Engine integration in the PAPAYA framework ... 114
Figure 47: Service upload and deployment diagram ... 128

file://///Users/orhanermis/Desktop/20190731_PAPAYA_D.4.1_Platform_Design_and_Development.docx%23_Toc15480037
file://///Users/orhanermis/Desktop/20190731_PAPAYA_D.4.1_Platform_Design_and_Development.docx%23_Toc15480039

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

7

Executive Summary

Rather than several standalone modules, the PAPAYA project aims at developing an integrated
platform for privacy preserving data analytics to make them available in a broad spectrum of
products and services, with usable, friendly and accessible safeguards options. The main goal of
the platform is to be used by service developers to deploy and run privacy-preserving services,
and by service consumers, that are interested to employ privacy-preserving analytics. The
document presents the platform functional design, architecture, and deployment. It describes the
design of the main platform components that were elicited based on the requirements presented
in D2.2 [1]. Moreover, it explains how different privacy preserving primitives that will be developed
in WP3 (see D3.1 [2]) are integrated into the platform in a way that they will be
interoperable/compatible with each other and could work together in the integrated platform.
Furthermore, it presents the design of platform dashboards that will provide the UI, configuration
functionality, and visualization functionality.

PAPAYA platform services are specified based on the four generic usage scenarios, namely
upload model, create model, apply model and collaborative training. In upload model, an already
trained machine learning (ML) model can be uploaded to the PAPAYA platform when the client
wants to delegate the computationally intensive task (which is applying a model on the client’s
sensitive data) in a privacy-preserving manner. The create model is used when the client is not
able to create the ML model; therefore, the PAPAYA platform generates a model on the protected
data shared by the client. Apply model is the use case where already uploaded or created model
is applied on the client’s protected data in a privacy-preserving manner. Finally, in collaborative
training, two or more participants perform a ML training collaboratively while preserving the
privacy of the training data.

The PAPAYA platform consists of the following services:

 Privacy-preserving analytics defined in deliverable D3.1 [2] such as classification on

Neural Networks, privacy-preserving clustering, privacy-preserving statistics, and privacy-

preserving collaborative training of Neural Networks

 Security and transparency services, including the identity access management (IAM) for

authentication and authorization services to the different components that will be

integrated in the PAPAYA platform, auditing to support auditing and towards being able to

hold stakeholders accountable for their use of PAPAYA, and key manager for managing

the cryptographic material during the whole lifecycle of the PAPAYA project in the cases

where it will be required.

 The PAPAYA platform provides two dashboards for configuration and visualization,

namely the platform dashboard and the agent dashboard. The platform dashboard is used

for configuration and monitoring the services provided by the platform whereas the agent

dashboard is used for viewing the data processing logs from an agent and for showing the

configuration of the agent.

 Data subject toolbox services provide a number of mostly independent tools (Explaining

Privacy-preserving Analytics, Data Disclosure Visualization, Annotated Log View and

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

8

Privacy Engine) which provide versatile services related to the data subject privacy.

Moreover, the PAPAYA platform provides means to its clients to integrate one or more

tools from the provided toolbox to generate an integrated data subject dashboard.

As a proof of concept usage, the platform will be deployed on IBM Kubernetes cloud service. In
addition to that, all services are designed to be generic in order to be deployed on any other cloud
platforms.

The intermediate platform implementation and PETs integration, including intermediate
implementation of the dashboard will be presented in deliverable D4.2 and the final platform
implementation and PETs integration after validation on project use cases, including final version
of the dashboard will be given in deliverable D4.3.

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

9

Glossary of Terms

2PC Two-Party Computation
AA Auditing Agent
ABY Arithmetic sharing, Boolean sharing and Yao’s garbled circuits framework
AC Auditing Collector
ALT Annotated Log view Tool
API Application Programming Interface
BF Bloom Filters
BGV Brakerski-Gentry-Vaikuntanathan homomorphic encryption scheme [3]
BFV Brakerski/Fan-Vercauteren fully homomorphic encryption scheme [4, 5]
CA Certificate Authority
CKKS Cheon-Kim-Kim-Song fully homomorphic encryption scheme [6]
CLI Command Line Interface
CNN Convolutional Neural Network
CPU Central Processing Unit
CR Container Registry
DB Data Base
DC Data Controller
DP Differential Privacy
DNN Deep Neural Network
DS Data Subject
DSRM Data Subject Rights Manager
DVT Disclosure Visualization Tool
ECG Electro cardiogram
ES ElasticSearch
FC Fully Connected
FE Functional Encryption
FHE Fully Homomorphic Encryption
GRU Gated Recurrent Unit
HE Homomorphic Encryption
IAM Identity Access Manager
KM Key Manager
ML Machine Learning
MLP Multilayer Perceptron
NN Neural Network
PE Privacy Engine
PHE Partially Homomorphic Encryption
PoC Proof of Concept
PPM Privacy Preferences Manager
RAM Random Access Memory

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

10

REST Representational State Transfer
ReLU Rectified Linear Unit
RNN Recurrent Neural Network
SIMD Single Instruction Multiple Data

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

11

1 Introduction

1.1 Purpose and Scope

The purpose of this deliverable is to provide a comprehensive description of the PAPAYA platform
architecture. The intended audience for this document consists of two main groups: (1) service
developers, who could use the document to understand the design of the existing services and to
develop and deploy their own services; (2) service users, who could use the document to
understand how to employ the services available on the platform and how to incorporate them in
their applications.

It is important to note that the description of the underlying algorithms employed by the services
presented in this document is not in the scope of this deliverable (they are described partially in
D3.1 [2] and will be described in D3.3 [7]).

1.2 Structure of the Document

The rest of the document is organized as follows:

 Section 2 presents PAPAYA stakeholders and generic use cases.

 Section 3 provides a high-level overview of the PAPAYA platform architecture.

 Section 4 describes in detail the potential core PAPAYA services, which are already

defined in deliverable D3.1 [2] and to be defined in deliverable D3.3 [7]. Provided services

in the scope of this deliverable are: (1) Privacy-preserving classification on Neural

Networks; (2) Privacy-preserving collaborative training of Neural Networks; (3) Privacy-

preserving clustering; and (4) Privacy-preserving statistics.

 Section 5 gives details about how security and transparency is achieved in the platform,

including authentication, authorization, auditing and key management for cryptographic

tools (if it is required).

 Section 0 presents PAPAYA dashboards, namely platform dashboard and agent

dashboard.

 Section 7 dedicated to Data Subject Toolbox, which provides versatile services

(Explaining Privacy-preserving Analytics, Data Disclosure Visualization, Annotated Log

View and Privacy Engine) related to the data subject privacy. Tools presented in this

section can then be used to form a data subject dashboard.

 In Section 8 we describe how to deploy and run all platform components.

 In Section 9 we describe how we plan to evaluate the integrated platform.

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

12

2 Stakeholders and Usage Scenarios

The platform stakeholders can be mainly separated into three permission groups:
1. Platform administrators – responsible for the platform resource allocation, monitoring of

resources and services (internal and external) that will run on the platform or will communicate

with the platform.

2. Service providers – the author of the services. The service providers will be able to upload/edit

and delete services to the platform.

3. Platform client – will use the services provided by the platform. The platform client is split into

two separate identities:

a. Client app – the application that will communicate with the service’s dedicate agent

that will run on a client side.

b. Client admin – the person that will deploy the service client-side agent and integrate it

with the client app.

Figure 1 presents the main flows of the platform services. Most of the services will implement two
main common phases, namely upload/create model and apply model. In this section, we describe
the generic usage scenarios, while in Section 3 we provide a detailed description for each service.

Upload model – this usage scenario relates to the scenario when the Machine Learning (ML)
model already exists. The client is willing to apply this model on sensitive data in a privacy-
preserving manner (apply the model use case). The client will upload the model to the server
using the client agent.

Create model – this usage scenario relates to the scenario when the client does not have the
ability to build a ML model and will use the platform for this purpose. The model will be built on
the encrypted data. In such case, the platform will not be exposed to sensitive or personal client’s
data. As the result of this scenario, the client will be able to download the model and use it locally,
or to apply the model, which will be hosted on the platform. The client will use the client agent in
order to obtain the cryptographic keys to encrypt the data with it. By using this encrypted data,
the server will create the trained ML model.

Apply model – this usage scenario relates to the scenario when the client is willing to apply a ML
model on a sample that contains sensitive data in a privacy-preserving manner. The client will
encrypt the sensitive data/sample and send it to the server using the client agent. The server will
apply the model on the encrypted data. The agent will obtain the result and decrypt it. One of the
usage scenario’s subcases is Basic statistic. This usage scenario is conceptually identical to the
apply model, while the main difference is that in this scenario the server will calculate basic
statistic functions on the encrypted data.

Collaborative training – this usage scenario allows two or more participants to perform a ML
training collaboratively, while preserving the privacy of the training data. The participants join the
collaborative training via the client-side agents that will be provided by the platform. The
participants provide the training data to the agent. The agents perform the training locally, on the

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

13

client’s premises, and exchange the knowledge achieved from the data with other participants
through the centralized server. As a result, the clients will be able to download a more accurate
ML model than the one obtained by performing the training task only on a participant’s data.

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

14

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

15

Figure 1: PAPAYA Generic Usage Scenarios

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

16

3 Platform Architecture

The PAPAYA platform (see Figure 2) is composed of two main groups of components: (1) the
server-side components that will be running on the (non-trusted, but semi honest) Kubernetes1
cloud server; and (2) agent side components, that will be running on trusted client environment.

1 https://kubernetes.io/

https://kubernetes.io/

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

17

Figure 2: PAPAYA Platform Architecture

The core components of the platform can be mainly divided into the following groups:

 The privacy-preserving analytics services which will allow platform clients to perform

service analytics of interest, in a privacy-preserving manner, such as privacy-preserving

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

18

NN classification, privacy-preserving NN collaborative training, privacy-preserving

clustering and privacy-preserving basic statistics. Each service is divided into two parts:

1. Server – responsible for performing analytics of interest on encrypted data and will run

on a PAPAYA’s Kubernetes cluster.

2. Agent – responsible for communication with the appropriate server-side component

and responsible for managing cryptographic operations for the client. The agent will

be downloaded from the Container Registry (CR) as a Docker image and deployed on

a client side. Deployment and execution will be under the responsibility of the

application client/application admin.

These services will be described in more details in Section 4.

 The platform security and transparency services which will provide platform

authorization, authentication (Identity and Access Management - IAM), auditing and

cryptographic Key Manager (if needed). These services will be further described in more

details in Section 5.

 The PAPAYA dashboards, Platform and Agent dashboards, which will allow platform

users to choose and deploy privacy-preserving services, review operational and auditing

logs. These services will be described in more details in Section 0.

 Data Subject Toolbox – consists of a number of mostly independent tools, which provide

versatile services related to the data subject privacy. These tools will be described in

more details in Section 7.

The server-side core components will communicate to external cloud services such as:

1. Data Base (DB) – responsible for storing relational data used by the platform dashboard

or any application that runs on a platform.

2. Elasticsearch2 – responsible for storing operational logs of the platform dashboard and

applications that will run on a platform as described in detail in Section 5.2.

3. Container Registry 3(CR) – responsible for storing service images that are provided by

service providers. Each service provider will provide two images for each of the services,

one for the server side (will run as deployment on k8s), and the second for running on a

client side.

4. Object Storage – responsible for storing NN model topology for privacy-preserving

collaborative training service.

2 https://www.elastic.co/
3 https://www.ibm.com/cloud/container-registry

https://www.elastic.co/
https://www.ibm.com/cloud/container-registry

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

19

5. Loggingbeat (Filebeat 4) – which is kind of Elastic Beat (see Section 5.2), responsible for

logs harvest and shipping them to the Elasticsearch instance. The Filebeat will run as a

K8s Deamonset5.

4 https://www.elastic.co/guide/en/beats/filebeat/5.0/filebeat-overview.html
5 https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/

https://www.elastic.co/guide/en/beats/filebeat/5.0/filebeat-overview.html
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

20

4 Platform Services

In this section, we describe in detail the server-side components. They are divided into three main
categories: (1) core platform services (Sections 4.1 - 4.4); (2) services responsible for the platform
security and privacy (Section 5); and (3) services responsible for platform dashboards (Section
0).

4.1 Apply Neural Network Model

In this section, we describe several services for applying neural network for the purpose of
classification in a privacy-preserving manner. The detailed description of these services can be
found in deliverables D3.1 [2] and D3.3 [7].

Prior to using any of the services described in this section, a Neural Network model should be
trained locally based on the clear text data with all the required optimization and the dimensionality
reduction. After achieving the desired accuracy, the trained model (i.e. architecture and weights)
should be saved in a supported format and passed to the service later as described in each of
the following subsections.

4.1.1 Privacy-preserving NN classification based on 2PC

In this section, the functional design of privacy-preserving NN classification based on two-party
computation (2PC) defined in deliverable D3.1 [2] is introduced.

4.1.1.1 Main components and their relationships

This solution has two main components:
1. Server-side component

2. Client-side component

Server-side component:
The server-side component consists of two modules as shown in Figure 3:

1. Interface: This module provides an interface to initialize the server with client’s IP

address, weight matrix and bias vector and also it is used to execute NN classification.

2. NN Model: This module is used for executing NN model using 2PC together with the client

component.

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

21

Figure 3: Topology of server-side component

Client-side component:
The client-side components consist of three modules as illustrated in Figure 4:

1. Interface: This module provides an interface for uploading the input data to be classified

and to execute NN classification.

2. Peak detection: This module is used for preprocessing electro cardiogram (ECG) input

file in order to obtain peak values to be used in NN model.

3. NN model: This module uses 2PC for executing the NN model together with the server.

Figure 4: Topology of client-side component

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

22

Detailed description of the modules:

The NN model was obtained based on the performance and security requirements as described

in deliverable D3.1 [2]. It has two fully connected (FC) layers and one activation layer in between.

In this model, several approximations have been used such as 𝑥2 as an activation function and

the softmax function [8]. All computations involve both the client and the server, and the

communication is ensured through sockets generated by ABY framework6 (a mixed-protocol

framework that efficiently combines the use of Arithmetic shares, Boolean shares, and Yao's

garbled circuits). When the model is executed, the output is generated in order to show the

prediction probabilities of corresponding 16 arrhythmia classes.

Interface (server): The interface module of the server is used for initializing the client’s IP

address, weights to be used in NN classification and bias vector using REST API.

NN model (server): The proposed model is compatible with 2PC (ABY) and is dedicated to

privacy-preserving arrhythmia detection use case (UC1) defined in deliverable [9].

Interface (client): The interface module of the server is used for uploading the file to be classified.

Peak Detection component: This module is used for preprocessing the input file in order to
detect detecting r-peak values in the input heartbeat file for a given time period. The peak
detection, in particular R-peak – the peak used for detecting the arrhythmia class – detection
operates as follows: 180 samples obtained from each heart beat is divided into 90 samples before
the R-peak, 1 sample for the R-peak and remaining 89 samples after the R-peak

NN model (client): This component is the complementary part of the server’s NN model
component. The client executes NN model using ABY in order to accomplish the classification of
heartbeat. Prior to the execution of NN model, in the client side, principle component analysis
(PCA) is applied to reduce the dimension of the input r-peak values to comply with the first matrix
to be used in the next FC (Fully connected layer). More details can be found in deliverable D3.1
[2].

4.1.1.2 Behavioral Analysis

There are two main flows in this solution: (1) initialization of the server; and (2) NN classification.

1. Server initialization: By using init REST API (see API definition in Section 4.1.1.5) call

weight matrix, bias vector and the client IP address is initialized in the server side as shown

in Figure 5. As an output, a string value to show whether the API call is succeeded or not

is sent to the client.

6 https://github.com/encryptogroup/ABY

https://github.com/encryptogroup/ABY

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

23

Figure 5: Initialization of client information into the server

2. NN model execution: The NN model component is executed in both the client-side and

in the server-side. In order to classify a heartbeat input, classify REST API call of the

server is used. In data flow, client sends the encrypted input to the server. Then, by using

ABY, client and server make computations for the classification of the given input data in

a privacy-preserving manner. All client to server and server to client API calls are

automatically realized by ABY. Finally, server sends the result of the classification as a

vector of arrhythmia classes. The illustration of the classification is as shown in Figure 6.

Figure 6: NN Classification by using 2PC

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

24

4.1.1.3 Deployment and configuration

In this section, we introduce the basics for the deployment and configuration for client and server
components.

Deployment:
The server-side and the client-side components will be deployed as Docker containers.

Configuration:
There are two main configurations for this model:

1. Server configuration: by using the init() call of server-side API (see Section 4.1.1.5), the

client IP address and port, weights matrix to be used for classification will be configured.

2. ABY configuration: In this configuration, ABY and its dependencies are installed in the

server-side component.

4.1.1.4 Implementation constraints

Implementation constraints of the proposed approach is as follows:
1. The NN model used in this version is static which means that all computations are realized

on a dedicated and optimized circuits involving arithmetic gates and very few Boolean

gates.

2. Square function (𝑥2) is used as an activation function.

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

25

4.1.1.5 APIs

POST / init

The init REST API call is used to initialize client’s IP address, weight matrix and bias vector as
shown in the Figure 7.

Figure 7: POST / init REST API call for server initialization

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

26

POST /classify

In this API call, the client sends the encrypted text to the server in order to start the classification
as shown in Figure 8. Then, the ABY framework organizes the rest of the socket API calls between
the client and the server.

Figure 8: POST / classify REST API call for classification

4.1.2 Privacy-preserving NN classification based on PHE

In this section, the functional design of privacy-preserving NN classification based on partially
homomorphic encryption (PHE) defined in deliverable D3.1 [2] is introduced.

4.1.2.1 Main components and their relationships

This solution consists of two main components:
1. Server-side components

2. Client-side components

Server-side component:
There are three modules in the server-side component as shown in Figure 9:

1. Interface: This module is used for initializing the NN model, weight matrix, bias vector and

IP address of the client.

2. Non-interactive computation: This module is used for server-side only computations

while computing the NN model.

3. Interactive computation: This module is used for interactive computations with the client

while computing the NN model.

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

27

Figure 9: Topology of server-side components

Client-side component:
There are three main modules on the client-side component as shown in Figure 10:

1. Interface: This module is used for uploading the input to be classified

2. Encryption/decryption module: This module is used for encrypting and decrypting the

input when it is necessary for classification.

3. Interactive computation module: This module is used for accomplishing the interactive

computations together with the server such as the computation of activation layer.

Figure 10: Topology of client-side components

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

28

Detailed description of the modules:

Interface (server): The interface module of the server is used for initializing the client’s IP
address, NN model, weights to be used in NN classification and bias vector via using REST API.

Computations on the server side: There are two types of computations in the server-side,
namely non-interactive computations and interactive computations. The non-interactive
computations are realized in the server-side. These non-interactive computations consist of all
linear operations (Convolution and FC layers) which are supported by partially homomorphic

encryption (PHE). In the interactive computations, the activation function 𝑥2 is computed by
involving both the server and the client using PHE. Components of the server are as follows:
1. Non-interactive computation component: In this component, server makes necessary

computations for convolution layer, fully-connected layer and mean pool layer of NN without

interacting with the client. All computations realized in this component consist of linear

computations only.

2. Interactive computation components: This server-side component computes 𝑥2 as the

approximation of sigmoid function.

Interface (client-side): The interface module of the server is used for uploading the file to be

classified.

Encryption/decryption component: This component is responsible for accomplishing
encryption and decryption using the public/private key pair of the client.

Interactive Computation components (client): This module is used for the interactive

computations in the activation layer, in particular the computation of the activation function 𝑥2.

This module is called interactive since both the server and the client involve into the computation

of the activation function.

4.1.2.2 Behavioral analysis

There are three main data flows in this solution: (1) initialization of server; (2) classification of the
input; and (3) secure square computation.

1. Initialization of server: This operation is accomplished by using init REST API call. With

this API call, client passes its IP address, NN model to be used in the classification, weight

matrix and bias vector to the server as shown in the Figure 11.

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

29

Figure 11: Server Initialization

2. Classification of the input: The client encrypts the input to be classified and then

transmits the encrypted input to the server as shown in Figure 12. Upon receiving the

encrypted input, server starts making non-interactive computations. Later, to make

interactive computations in the activation layer, server interacts with the client by using

REST API calls that are defined on the client. Finally, the result is decrypted by the client.

Figure 12: Classification of the input

3. Secure square computation: In this solution, we propose to use 𝑥2 as an activation

function. Since most of the partially homomorphic encryption libraries only support addition

on the encrypted input, in our approach, we propose the involvement of the client into the

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

30

computation of 𝑥2. Therefore, server makes an API call to accomplish this computation as

shown in Figure 13.

Figure 13: Secure Square Computation

4.1.2.3 Deployment and configuration

In this section, we describe the deployment and configuration constraints of the privacy-
preserving NN classification based on partially homomorphic encryption.

Deployment:
The server-side components and the client-side components will be deployed as docker
containers.

Configuration (Rest API):
IP address of the client should be initialized in the server-side before executing the classification.
In addition to that, the POST / init RESTAPI call also used for initializing the NN model, weight
matrix and bias vector.

4.1.2.4 Implementation constraints

 𝑥2 which approximates the sigmoid function is used as an activation function.

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

31

4.1.2.5 APIs

POST /init

This API call is used for initializing the server as shown in

Figure 14 in order to initialize client’s IP address, weight matrix, bias vector and NN model in the

server-side.

Figure 14: POST / init REST API call

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

32

POST /classify

This API call is used for classifying the encrypted input and operates as shown in Figure 15.

Figure 15: POST / classify REST API call

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

33

POST /securesquare

This API call is used for securely computing and operates as shown in Figure 16.

Figure 16: POST / securesquare REST API

4.1.3 Solution based on Fully Homomorphic Encryption

This solution uses Homomorphic Encryption (HE) in order to build a privacy-preserving neural
network inference solution. This solution uses the CKKS scheme [6] implemented in Microsoft
SEAL library [10] .

4.1.3.1 Main components and their relationships

This solution consists of three main components:

1. Server-component.

2. Company-side component.

3. Client-side component.

A company provides a service of privacy-preserving neural networks inference to its clients

using the PAPAYA platform hosted on a server.

Server-side component:

The server-side component consists of 3 modules (Figure 17):

1. SEAL: the homomorphic encryption library that provides basic homomorphic

operations on ciphertexts.

2. NN: this module provides methods to evaluate neural networks using homomorphic

operations.

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

34

3. Interface: this module provides a REST API of the server-side component.

Company-side component:

The company-side component consists of one module (Figure 18):

1. Agent interface: this module provides a REST API of the company-side component;
it will deal with all the communications with the server.

Client-side component:

The client-side component consists of 3 modules (Figure 19):

1. SEAL: will be used to generate the keys, encrypt and decrypt data.

Figure 17: Topology of server-side modules

Figure 18: Topology of company-side modules

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

35

2. Ext_libs: will provide the necessary methods to process data before encryption and

after decryption. The methods will change depending of the use-case.

3. Agent: will provide the REST API of the agent and deal with communications to the

server.

Detailed description of the modules:

SEAL

Microsoft SEAL is an easy-to-use homomorphic encryption library developed by researchers in
the Cryptography Research group at Microsoft Research. Microsoft SEAL is written in modern
standard C++ language. The library implements the BFV scheme [5] and CKKS scheme [6]. This
module is used on both the client side and the server side. On the client side, the module is only
used for the generation of the secret key and public key and for encryption and decryption
procedures. On the server side the module is used to perform the homomorphic operations.

Ext_libs

Depending on the use case, it may be needed to perform some preliminary computations (e.g.
cleaning, normalization …), or some final computations (e.g. max, softmax functions …). The
Ext_libs module packages all the necessary methods.

NN

This module packages the basic routines of the inference of a neural network, and the methods
to encode a neural network to make it works with homomorphic encryption. This module is
responsible for:

1. Initializing the network by encoding its weights and saving it.

2. Evaluating the different layers (convolution, dense …) of a network using the SEAL

module.

Figure 19: Topology of client-side modules

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

36

4.1.3.2 Behavioral Analysis

There are three main flows in the framework: (1) model initialization, (2) keys generation, and (3)

classification. Next the detailed description of each of them.

1. Model Initialization (Figure 20). In this phase, the company wants to upload the

neural network model to the platform. We assume that the NN model is already trained

and modified for homomorphic encryption (e.g, replaced non polynomial functions by

polynomial approximations). Along with the model, the company transmits the context

variable that describes the homomorphic encryption parameters that will be used by

the platform. Therefore, when the agent’s init method is called by the client application

with the NN architecture and the context (Step 1), the agent calls the server and sends

the model (Step 2). Upon the model reception, the interface invokes the init method of

the NN module (Step 3). The NN module creates a new network by encoding the

network weights into plaintexts with SEAL, based on the parameters defined in the

context variable (Step 4).

2. Key generation (Figure 21). In this phase, the client wants to generate the keys to

use the NN service. The client application calls the Agent (Step 1), which checks

whether the context data is cached. If the context data is cached, the agent loads this

information. Otherwise, agent requests the server interface with the getContext

method (Step 2), which sends back the context data (Step 3). Then the agent

calls the keygen method of the SEAL module (Step 4) which generates the

secret key (sk) and the public key (pk), based on the provided context

Figure 20: Sequence diagram of the initialization

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

37

information (Step 5). These keys will be used to encrypt the data to classify and

decrypt the result of the classification.

Figure 21: Sequence diagram of the key generation.

3. Classification (Figure 22). The classification phase is more complex. The client

application calls the classify method of the agent with the raw data to classify (Step 1).

Depending of the use case, the raw data have to be processed before encryption.

Therefore, if needed, the client agent calls the process_input method of the Ext_libs

module (steps 2 and 3). Once processed, the agent calls the encrypt method of the

SEAL module (Step 4), that sends back an encryption of the data (Step 5). The agent

can then call the classify method of the server interface with the encrypted data as

inputs (Step 6). Upon reception of the encrypted data, the server interface invokes the

evaluate method of the NN module (Step 7) that homomorphically evaluates the neural

network, with the help of the SEAL module to perform the requested homomorphic

operations. Once the computations are done, the interface sends back the encrypted

result to the client agent (steps 12 and 13). Upon reception of the encrypted result, the

client agent calls the SEAL module to decrypt the result (steps 14 and 15). If needed,

the agent calls the process_output method of the Ext_libs module (steps 16 and 17)

to finalize the computations (e.g. computations of max, softmax …). Finally, the agent

sends the final result of the classification to the client application (Step 18).

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

38

4.1.3.3 Deployment and configuration

Deployment:
The server-side and client-side components will be deployed as Docker containers. The user
will use the PAPAYA dashboard to manage the deployment of containers.

Configuration:
A dedicated configuration file will set all the parameters the service expects to receive, the agent
needs to know server IP/URL for REST_API.

4.1.3.4 Implementation constraints

At the moment, the current version expects to receive as input a pretrained neural network as two
files. One JSON file describing the network architecture and one h5 file containing the weights.
The files will be uploaded to the server during the model initialization phase using the REST API.

Figure 22: Sequence diagram of the classification phase.

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

39

4.1.3.5 APIs

Server API:

Description of the server-side REST API.

POST/Init

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

40

GET/HEcontext

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

41

POST/Classify

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

42

Client API:

Description of the client-side REST API.

POST/Init

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

43

GET/Keygen

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

44

POST/Classify

4.1.4 Privacy-preserving NN classification based on hybrid approach

The hybrid solution uses both, the HE and 2PC, in order to build a privacy-preserving NN
classification framework and maximize the efficiency of classification on deep NN. The solution is
practically generic, namely, it supports different types of DNN (i.e., MLP, CNN, and RNN) with
any number of layers, any number of neurons in each layer and any activation function (from the
set of supported activation functions), while the performance still acceptable (grows linearly with
the DNN’s depth).

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

45

4.1.4.1 Main components and their relationships

The solution consists of two main components:
1. Server-side component

2. Client-side component (Agent)

Server-side component:

The Server-side component consists of seven modules:

1. HElib [11]: the homomorphic encryption library which provides the basic capability to

encrypt and decrypt homomorphically. In addition, it allows executing operations on

ciphertexts, such as addition, multiplication and rotation.

2. Linear algebra module: the module allows the server-side component to compute the

linear layers of the NN (i.e., convolution layers, average pooling, fully connected layers,

and GRU layers to support recurrent NN)

3. Garbling module: We use Yao’s garbling circuits [12] approach to compute the activation

functions. Specifically, we use JustGarble [13] as a garbling library. In our case, the client

will garble the circuit, and the server will evaluate it to obtain the garbled result. Only the

client can map between the garbled result and the real values.

4. LibOTe [14]: this library will be used to execute oblivious transfer [15] while computing the

activation functions.

5. 2PC module: runs 2PC protocol between the server and the agent. This module combines

garbling module and libOTe to create a full secure multiparty computation functionality.

This module will be used mostly to compute the activation functions privately and without

revealing the intermediate values to any party.

6. NN module: this module will represent the privacy-preserving version of the original neural

network. It will be able to compute the mathematics behind the NN in a privacy-preserving

manner. The module will receive as input the NN architecture and the network weights

and will construct the corresponding NN model in a generic way.

7. NN Interface module: this module provides the REST API of the server-side component

and invokes all the previously mentioned modules.

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

46

Figure 23 illustrates the topology of the server-side component.

 Figure 23: Server-side components – topology

Client-side component:

The client-side component consists of three modules:

1. HElib module: it will be used to encrypt the input and to decrypt the server-side

component’s output. Also, it will be used to generate the keys.

2. 2PC module: it is responsible for secure two-party computation. This module will use

JustGarble and libOTe. Upon receiving a noised ciphertext, the client decrypts the

ciphertext, to obtain a noised message. Then it garbles the circuit which reduces the noise

and computes the activation function, and evaluate the circuit with the server-side

component.

3. Agent Interface module: this module provides the REST API of the agent and manages

cryptographic protocols with the server-side component. The agent interface provides the

following functionality:

a. GenKeys: generate keys for the homomorphic encryption.

b. Init: receives several parameters (i.e., NN architecture, server credentials, FHE

keys) and configures both, the agent and server.

c. Classify: receives a plaintext vector and keys and runs a protocol with the server

to classify the input vector in a privacy-preserving manner.

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

47

Figure 24 illustrates the topology of the client-side component.

Figure 24: Client-side component – topology

Detailed description of the modules (for both components):

HElib
HElib is a very well-known and open source library. The library implements the BGV scheme [3]
with SIMD (single instruction multiple data) property [16]. The library provides the following main
functionalities:

1. Encrypt: the encrypt operation receives a plaintext (long) vector and convert it to a

ciphertext vector.

2. Decrypt: the decryption operation receives an encrypted vector and decrypts it to the

corresponding plaintext vector.

3. Addition/multiplication/rotation: the library allows basic operations on ciphertext vectors.

We use mostly three of them: addition, multiplication and rotations.

4. Vector-Matrix multiplication: HElib provides basic linear algebra operations, specifically,

vector-matrix multiplication.

Linear Algebra
The linear algebra module will implement all linear algebra needed for neural network
classification on ciphertext. In fact, there are will be many instances of Linear Algebra module,
each one responsible for the specific layer type. In the first version of the system, we will support
convolution, pooling, and dense layers. In the next version we plan to add support for GRU layers
to deal with RNN networks.

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

48

JustGarble (from Gazelle)
We will use JustGarble library for garbling and evaluating garbled circuits. In our implementation
we will use the modified version of the library which Gazelle [17] used in their system.

libOTe
libOTe [14] is one of the most efficient oblivious transfer implementations we could find. It supports
various oblivious transfer protocols. We are going to use a 1-out-of-2 semi honest protocol [18].

2PC
This module uses both, the JustGarble and libOTe to provide a full secure multiparty computation
module. The four main functionalities of this module are: (1) circuit garbling; (2) circuit evaluation;
(3) execution of oblivious transfer protocol; and (4) interactive protocol to compute a circuit
privately. It uses sockets to communicate between the server and the client. In more details, the
main functionalities of the 2PC module are as follows:

1. Garble (will be running on the client side): receives a circuit as input and garbles it. We

will provide the system with implementations of few activation functions (i.e., ReLU, tanh

and sigmid) for a single neuron. JustGarble can take a circuit for a single neuron and

extend it to any number of instantiations. This feature is very useful and allows us to

compute activation function for any number of neurons and help the system to be more

generic.

2. Evaluation (will be running on server side): receives a garbled circuit and evaluates it

to compute the real output of the function.

3. OT: executing oblivious transfer on the inputs as part of 2PC algorithm.

4. Communication between the server and the client.

NN
The neural network (NN) module will encapsulate the neural network functionality. It will contain
the neural network architecture, configuration, and combine all the previously mentioned modules
to provide a complete and efficient privacy-preserving neural network classification framework.
The module will be responsible for the following tasks:

1. Create and initialize appropriative Linear Algebra module for each layer of the network.

2. Initialize the 2PC module. The NN will provide the 2PC component with port number on

which it will be listening for connection request from the 2PC module running on the client-

side.

3. Initializing HElib with correct parameters and create HE context.

4. Implementing switching protocol to convert between FHE and 2PC without revealing any

intermediate values. The protocol adds input noise to the ciphertext, to prevent revealing

the intermediate values to the agent. Also, it adds output noise to the result of 2PC

(computing the activation functions). The server, removes the noise after receiving the

encrypted result from the agent, see Figure 27 for more details.

5. To support persistency, the module has the ability to save and load the neural network. In

case the server is down, the module can reload itself. We will use HDF5 format to store
or load a neural network weights and JSON format to store/load network architecture.

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

49

Note that HElib and 2PC are shared modules in both, the server-side and the client-side
components. However, the functionality that used may differ between the components. For
example, the client will use the garbling functionality of 2PC, while the server will use the
evaluation functionality.

4.1.4.2 Behavioral Analysis

There are three main flows in the framework: (1) key generation; (2) system initialization; and (3)
vector classification. Following is a detailed description of each of them.
1. Key Generation (keyGen): the flow involves a client app which calls the agent to create

homomorphic encryption keys for HElib. The client app is responsible for managing the keys

(they will be used for system initialization and vector classification). Figure 25 illustrates the

key generation process.

Figure 25: Key generation – sequence diagram

2. System initialization: Figure 26 describes the sequence diagram of the initialization phase.

When the agent’s init method is called with NN architecture, matrices weights (depicted by h5

in the Figure 26) and HE keys as parameters, the agent saves the network architecture for

future use (i.e. calculation of activation functions for each layer), initializes HElib to create HE

context, and calls the server’s init method (NN interface) with the NN architecture, weights

and the public key. The NN interface, in turn, calls init method of the NN module. The NN

module saves both, the network architecture and the network weights (for feature use),

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

50

provides the 2PC with port number to listen on (the port number set while configuring the

system), and initializes HElib.

 Figure 26: Initialization - sequence diagram

3. Vector classification: the classification procedure is much more complicated. Upon calling

the agent’s ‘classify’ method with plaintext vector, the agent encrypts it using HElib and sends

it to the server. The server iterates the layers one by one (in NN module). For each layer there

are two main parts:

a. Computing the layer: the server creates the current layer object with corresponding

weights (e.g. convolution, FC) and computes the linear algebra part of the layer.

b. Computing the followed activation function (if exists): the server adds noise (input

noise, chosen randomly over the integer group P – FHE parameter; for details see

D3.1 [2]) to the (linear algebra) result and sends the encrypted vector (with noise) to

the client. The client decrypts it. In case of computing activation function, the client

garbles the corresponding circuit (for the entire layer: it keeps pointer to the current

layer, it knows the number of neurons in this layer and the type of activation function

from the network architecture, and it is provided with implementation of specific

activation functions for a single neuron), sends it to the server and execute OT protocol

to exchange the inputs. The circuit reduces the input noise (added by the server),

calculated the activation function, and adds noise to the output (on the server side).

The server evaluates the circuit to obtain the garbled output (with the output noise)

and sends it to the client. The client maps the garbled output to the noised output,

decrypts it and sends it again to the server to reduce the noise. Finally, the server

reduces the noise.

Figure 27 depicts the sequence diagram of the procedure of computing one layer in
details. Computing the rest of the layers is the same. For simplicity, we mention the 2PC
module only (in practice, it uses JustGarble and libOTE modules internally).

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

51

 Figure 27: Classify vector - sequence diagram

4.1.4.3 Deployment and configuration

This section describes the deployment and configuration phases.

Deployment:
Both, the server-side component and the agent-side component will be deployed as Docker
containers (see Section 8 for details). The user can use PAPAYA dashboard in order to deploy
the containers.

Configuration:
It will be a dedicated configuration file for all the parameters the service expects to receive

 Agent needs to know server IP/URL for REST_API.

 Server needs to know agent IP and port to use sockets for 2PC (agent could pass as

params in init)

The mentioned requirements (server/agent IP’s & URL’s), will be provided to the agent in the
configuration phase, before the deployment.

4.1.4.4 Implementation constraints

Following is a list of implementation constraints/limitations of current version:

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

52

1. The service expects to receive as input a pretrained neural network. This network could

be trained using any framework providing this functionality (e.g., Keras [19]). The network

architecture should be saved in JSON format while the network weights should be saved

in h5 format. Both files will be transferred to the server-side component during initialization

using REST API.

2. To make our implementation generic (in terms of supporting different types of neural

networks with different architectures), we need to support different type of layers and

different activation functions. The first version of the system will support convolution,

pulling and fully connected layers, and ReLU, tanh, and sigmoid activation functions. More

layers and more functions will be supported in the next version if required.

4.1.4.5 APIs

Server API:
There are two REST API calls supported by the Server-side component: (1) Init; and (2) Classify.
The Init call configures the server and creates the required model. The Classify call receives as
input an encrypted vector and classifies it. Following is a detailed description of the calls.

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

53

POST /init

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

54

POST /classify

Client API:
There are three REST API calls supported by the Client-side component: (1) GenerateKeys; (2)
Init; and (3) Classify. The GenerateKeys call will generate public and secret keys for homomorphic
encryption. The Init call configures the client-side component and sends configuration parameters
to the server-side component. The Classify call receives as input an encrypted vector, sends it to
the server side-component for classification and receives the encrypted result. Following is a
detailed description of the parameters:

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

55

GET /generateKeys

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

56

POST /init

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

57

POST /classify

The classify API call runs interactive protocol between the client and the served components
underneath. This protocol computes the layers of the NN iteratively and generically. Namely, it
computes the layers of the NN one by one (depending on the layer type) on the server side and
it computes the activation functions using 2PC.

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

58

4.2 Collaborative Training of Neural Network

Collaborative training of NN allows multiple participants to perform a ML training collaboratively,
while preserving the privacy of the training data.

4.2.1 Main components and their relationships

Privacy-preserving collaborative training will consist of the following components:
1. The client side (client agent) – it is responsible for performing the following functionalities:

a. NN training

b. Adding Differential Privacy (DP) noise

c. Performing Anomaly detection

d. Uploading noised gradients and downloading the model parameters to/from

centralized server.

Figure 28 presents the client agent components that will run on the client side (trusted
environment).

Figure 28: The client agent components

2. The server side (centralized server) – it will provide the following functionality:

a. Allow participants to define and download the initial model

b. Aggregate the gradients from the collaborative training participants.

c. Allow participants to download the model parameters during the training phase.

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

59

d. Perform anomaly detection to identify adversary participants.

Figure 29 presents the server-side components that will run on PAPAYA K8s cluster. The
service instance will be allocated per training task.

Figure 29: The server components

3. Object Storage:

a. The server will store the model on the object storage. Storing model will allow users to

download a trained model and to minimize damage and recovery in case of crushes

during the training phase.

4.2.2 Behavioral analysis:

The training phase begins when all participants have completed the configuration phase, as

defined in configuration section below. Each client will provide a path to the local dataset to the

agent. The agent will perform a NN training localy and upload the noised gradients to the

centralized server (located on the PAPAYA cluster). The server will agregate the gradiennts to

the centralized model and will allow agents to download the updated model. Client agents will

download the model and overwrite the local one. The agent will proceed the training phase on the

updated model and so on. In addition, the agent and the server will apply anomaly detection on

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

60

the model and the model’s updates. Each client will define the steps that the agent will perform in

case an anomaly is detected. Figure 30 depicts the behavioral analysis and the configuration

stage as described in the following section.

Figure 30: Collaborative training - sequence diagram

The client agent will communicate with the server via REST-API calls. The client app will
communicate with the client agent via REST-API calls.

4.2.3 Deployment and configuration

Deployment:
The server and the client-side agent will be provided as container images and uploaded to the
PAPAYA’s CR. The deployment of the service on the platform is described in (Section 8.2). The
application administrator will deploy the client-side agent container following the client app
requirements.

The initiation step will be performed only by one of the participants. For the clarity of this
explanation we will refer to this agent as the “initiator”. After the deployment and before the
service initiation is performed, the server doesn’t contain neither NN model architecture and nor
model parameters.

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

61

Configuration:
The client app administrator will provide to the agent an NN model (based on TensorFlow7 as
backend).

The initiator will upload the NN model to the server in hdf5 format (TensorFlow compiled model).
In addition to model architecture, the initiator will provide the minimal and maximal number of
participants. The server will save the uploaded model and generate tokens equal to the maximal
number of participants. Only with this token the participant will be able to join and perform training.
By using the tokens, we will be able to block unauthorized users from model downloading and
training participation. The initiator will distribute the tokens between the participants in the offline
process.

Each participant will be able to download the model and join the training. Only after the minimal
number of the participants joined (registered), the training will be able to start (till then the server
will respond to upload gradients/ download model parameters with an appropriate error).

Participant will not be able to join the training when the number of registered participants is equal
to the maximal number.

The initiator will define the number of epochs performed by the model and whether the server will
perform anomaly detection or not.

Only the initiator will be able to terminate and reset the training process. This feature could be
useful for subsequent execution of the collaborative training with different parameters.
In case the server detects any kind of anomaly, it will notify the participants on the detection via
the response object of the download model or upload gradients API calls.
The agent will perform anomaly detection on the client side. Client app administrator will be able
to define the action (e.g. terminate the training or ignore), which will be performed if an anomaly
(either on the client side or on the server side) is detected.

4.2.4 Implementation constraints

The service (both the client and the server side) will be implemented as REST-full web service
using python8 v3.* and Flask framework. Both client and server will document the APIs via
Swagger9.

The server will store the model by using the COS (cloud object storage).

7 https://www.tensorflow.org/
8 https://www.python.org/
9 https://swagger.io/

https://www.tensorflow.org/
https://www.python.org/
https://swagger.io/

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

62

As mentioned above, the server side will allocate legal tokens per training task and will expect to
receive this token on every request. When the training is finished the model will be stored in the
COS and will be available for download as long as the service is available.

The service will receive the COS credentials using Kubernetes secret mechanism.

Constraints:

1. Service instance per NN model. Each service instance will support a single topology only.

2. We support only hdf5 file format (TensorFlow compiled model) to represent NN models.

The distribution of token to participants will be performed offline by the service initiator. (out of
the PAPAYs scope)

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

63

4.2.5 APIs

The initial version of the service APIs (documented with swagger) provided bellow.

POST /init

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

64

GET /download

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

65

POST /upload

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

66

POST /reset

The initial version of the client agent APIs, documented with swagger, provided next.

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

67

POST /set_config

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

68

GET /get_config

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

69

POST /set_model

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

70

GET /get_model

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

71

POST /train

4.3 Clustering

4.3.1 Privacy-preserving clustering based on PHE

In D3.1 [2], the preliminary design of a privacy-preserving (PP) trajectory clustering solution based
on partially homomorphic encryption, in particular the Paillier encryption scheme, was introduced.
In the proposed approach, there were several transformations of the operations in the original
trajectory clustering algorithm [20] was replaced in order to support homomorphic encryption (HE)
and optimize the computational cost. Such transformations consist of replacing the original
distance metric with the Euclidean distance and employing an additional server to help support
necessary computations with the Paillier encryption scheme. Nevertheless, the experimental
results show that the proposed protocol remains costly in terms of the total execution time.
Therefore, we are planning to develop a 2PC-based solution in order to achieve better
performance in trajectory clustering. The complete design and the functional specification of the

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

72

PP trajectory clustering solution will be presented in deliverables D3.3 [7] and D4.2 [21],
respectively.

4.3.1.1 Main components and their relationships

This solution has two main components:
1. Server-side component

2. Client-side component

Server-side component:
The planned solution is expected to be compatible with 2PC. Thus, the server-side component
will contain Boolean and Arithmetic circuits to perform the computations for the clustering
algorithm together with the client.

Client-side component
The client-side component consists of two modules:

1. Partitioning phase module: the client converts trajectory information to line segments and

then encrypts/protects those line segments for their use in the clustering phase.

2. Clustering phase module: similar to the server-side component, the client also executes

the computations with the server for the clustering phase and this component will also

contain Boolean and arithmetic circuits.

4.3.1.2 Behavioral Analysis

The potential solution will operate as shown in Figure 31. The client processes trajectory data to
obtain line segments. Later, it encrypts and sends those line segments to the server. Then, the
client and the server will perform the actual clustering algorithm using 2PC. In addition to the 2PC-
based solution, we also plan to work on the Paillier-based version to improve the performance of
the protocol in terms of the total execution time.

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

73

Figure 31: Privacy-preserving Trajectory Clustering

4.3.1.3 Deployment and configuration

Will be presented in D4.2 [21].

4.3.1.4 Implementation constraints

Will be presented in D4.2 [21].

4.3.1.5 APIs

Will be presented in D4.2 [21].

4.4 Basic Statistics

4.4.1 Privacy-preserving statistics based on Functional Encryption

In this section we present the architecture of the solution for the privacy-preserving computation
of statistics using functional encryption.

4.4.1.1 Main components and their relationships

The solution consists of three main components:

1. Server-side component

2. Client-side component

3. Requestor-side component

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

74

Server-side component:

It consists of the following two modules (Figure 32):

 FE module. It provides the evaluation functionality that allows to perform operations

(mainly addition, multiplication, dot product).

 Operation module. It will help define the functionality 𝑓 that will be evaluated on

encrypted data and outputs a description of 𝑓. For instance, in the case of the dot product

〈. , 𝑦〉, with a vector 𝑦 owned by the server, the module will output a (possibly encoded)

description of 𝑦.

 Figure 32: Server-side component

Client-side component:

It consists of the following two modules (Figure 33):

1. FE module. It provides all the client-side functionalities, namely KeyGen, which generates

the secret key for the client, encrypt which takes as input the plaintext data and DKeyGen

which outputs the evaluation key for the server-side component.

2. Ext_libs. It provides additional methods that may be necessary for the client-side (such

as a secret sharing library).

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

75

 Figure 33: Client-side component

Requestor-side component:

It consists of the following two modules (Figure 34):

1. Agent. It has a request method that allows the Requestor to request analytics from the

service.

2. Crypto module. This module may be solicited to provide the Requestor with keying

material that will be used to decrypt the final results.

 Figure 34: Requestor-side component

Detailed description of the modules:

FE module. The FE module implements a functional encryption scheme (see [2]) specifically for

inner product in the decentralized and multi-client scenario. The library may provide the following

algorithms: KeyGen (to generate the client’s key pairs), Encrypt (to encrypt a plaintext), DKeyGen

(to generate the functional decryption key) and Evaluate (to evaluate the requested function on

the ciphertexts).

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

76

Operation module. This module tailors the function to be evaluated. Since the current existing

functions that are implemented in practical FE schemes are inner products and quadratic

polynomials, this module will, based on the request, output either a description of the vector 𝑦

used for the inner product or a description of the matrix representing the quadratic polynomial.

Ext_libs. In the current version of the privacy-preserving statistics with FE, we may need this

additional library to invoke a (threshold) secret sharing algorithm. This aspect will be detailed in

subsequent deliverables (in D3.3 [7] and D4.2 [21]).

4.4.1.2 Behavioral analysis

The service operates in two main phases:

1. System initialization (including the analytics initialization and the key generation)

2. Statistics (including the computation on encrypted data and the decryption of the results)

System initialization (Figure 35)

In this phase, the Requestor generates its key material by invoking the Crypto module (steps 1

and 2). Afterwards, the Requestor invokes the Agent module to issue an analytics request which

includes the description of the requested statistics operation and the description of the data to be

analyzed (Step 3).

The server receives the request and invokes the Operation module to generate a description of

the function 𝑓 based on the requested statistics operation (steps 4 and 5). The description of 𝑓

and the request for data is forwarded to the client (Step 6).

The client calls the FE module to generate its own key material (steps 7 and 8). It also generates

the functional key 𝑠𝑘𝑓 that will be used by the server to perform the requested operation (steps 9

and 10). Depending on the implemented FE scheme, each client issues a partial functional key;

in this case, 𝑠𝑘𝑓 is the combination of all partial functional keys. If needed, the client also calls the

Ext_libs module to generate auxiliary information (steps 11 and 12). The functional key 𝑠𝑘𝑓 is

transmitted to the server (Step 13).

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

77

Figure 35: Initialization (stats)

Statistics phase (Figure 36)

The client encrypts the requested data using the key material produced in the initialization phase

by invoking the FE module (steps 1 and 2). If necessary, the Ext libs module is called to produce

auxiliary information (steps 3 and 4).

The ciphertexts are sent to the server (Step 5), which invokes the evaluate method of the FE

module to perform the statistics operation over encrypted data, using 𝑠𝑘𝑓 (steps 6 and 7). The

result is somehow blinded using Requestor’s public key.

The encrypted result is sent to the Requestor still in the encrypted form (Step 8). The latter invokes

the Crypto module to decrypt the result using its own private key (Step 9). Finally, the Requestor

gets the result in plaintext format (Step 10).

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

78

Figure 36: Statistics phase

4.4.1.3 Deployment and configuration

The server and requestor components will be deployed as Docker containers. As the client
component will run on users’ mobile devices, they will be deployed through a mobile phone
application (most probably running Android).

Regarding the server configuration, it should accept both the clients’ and the requestor’s IP
addresses and port numbers. It should also receive from the requestor the total number of clients
taking part in the study and the minimum number of clients (threshold value) below which nothing
can be learned by the requestor. Note that the requestor does not need to interact with the clients.

On the other side, the clients should have the server’s IP address and port number. Besides, the
clients must hold a (possibly random) public identifier (or index) that may be used to link keys to
their holders. Finally, the clients must agree on a common public key (in addition to their
respective key pairs). This common public key is used to generate the key shares, that the server
needs to perform the requested evaluation.

4.4.1.4 Implementation constraints

As mentioned before, the requestor and the clients do not interact with each other. More
importantly, clients do no interact with each other, while they are required to jointly agree on a
common public key. This agreement step may be performed prior to the initialization phase.

During the collection of encrypted data provided by the clients, the server should wait until it
receives more than the threshold value. Note that the server maintains a list of indices of those
clients that participate in the analytics and deletes this list right after the completion of the
computation.

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

79

Considering the current state of the art, only two families of functions are implemented in FE
schemes, namely the dot product [22, 23, 24, 25] and quadratic functions [26, 27], hence limiting
the number of available implementations.

Finally, the computations at the client side should be lightweight, since all operations described
above are performed in their mobile phones.

4.4.1.5 APIs

The server handles the privacy-preserving computation requests issued by the requestor. The
server finally returns the (encrypted) computation results to the requestor.

It is assumed that an active connection exists between one client and the server and that the
clients somehow listen to data requests from the server. When the clients receive a request from
the server, specifying which (encrypted) data attributes to collect for the requested computation,
they generate the (partial) functional key (as shown in Figure 35) as well as the key material used
to encrypt their data (Figure 36).

Requestor API

Server API

Client API

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

80

4.4.2 Privacy-preserving Counting using Bloom Filters

In this section, we present our solution to privacy-preserving counting using Bloom Filters.

4.4.2.1 Main components and their relationships

The solution consists of three main components:

1. Server-side component.

2. Requestor-side component.

3. Client-side component.

Server-side component:

It consists of the following modules (Figure 37):

- Storing module. Such a module is used by the Server to store the request received from

the Requestor. In particular, this module is used to store the received cryptographic keys

for future use.

- Operation module. Depending on the analysis stored by the Storing module and taking

as input one or several encrypted Bloom Filters, this Operation module performs the

analytics (set intersection, set union and counting). The result is finally sent, in the

encrypted form, to the Requestor.

-

Figure 37: Server-side component

Requestor-side component:

It consists of the following modules (Figure 38):

1. Agent module. It contains a Request method that allows the Client to request analytics

from the service.

2. Crypto module. Such module is composed of two methods. The first one is used to

generate the cryptographic keys used to eventually obtain the results of the statistics. The

second one is the decryption method, used to decrypt the received result.

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

81

Figure 38: Requestor-side component

Client-side component:

It consists of the following modules (Figure 39):

1. Agent module. It interfaces with the Server, collects the probe data from antennas and

creates the plain Bloom filters. It also invokes the Crypto module to encrypt the generated

filters.

2. Crypto module. Such a module encrypts the input plain Bloom Filters, used after their

reception. This module makes use of the cryptographic keys that have been received

previously by the server.

Figure 39: Client-side component

4.4.2.2 Behavioral analysis

The service operates in three main phases (see Figure 40):

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

82

1. System initialization, including the analytics initialization and the key generation;

2. Encryption phase - used to encrypt the Bloom Filters;

3. Statistics phase, including the computation on encrypted data and the decryption of the

results

System initialization

In the system initialization phase, the Requestor first invokes the key generation method of the

Crypto module (Step 1) to generate the cryptographic keys (Step 2) that will be used to protect

the probe data (stored in a Bloom filter). The Client then generates a description of the analytics

it wants to obtain (quantity of probe data, locations, dates and analytics, among counting, set

intersection and union). It finally generates analytics request which includes the description of the

analytics and the cryptographic key used to encrypt the data (Step 3).

The Server receives the request and invokes the Storing module (Step 4) to store analytics and

the cryptographic key. It then generates a request to an internal interface to obtain the Bloom

Filters related to such analytics (Step 5).

Encryption phase

At different times, depending on the analytics, the Client (Orange Network) obtains from internal

resources one or several Bloom Filters (steps 6 and 7). It requests the encryption module to

encrypt the Bloom Filters (steps 8 and 9) and store the result internally. Depending on the request,

the Client may have to wait for the reception of several Bloom Filters (at different times) before

processing the next phase.

Statistics phase

When all the data have been obtained, and according to the initial request by the Client

(Requestor), the Server makes use of the Operation module (steps 11 and 12) to perform the

analytics (counting the number of people in one Bloom Filter, or in the intersection/union of several

Bloom Filters). The result, still in the encrypted form, is sent to the Client (Step 13).

The Client executes the Decryption method of its Crypto module (Step 14) to obtain the result in

plain (Step 15).

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

83

Figure 40: Privacy-preserving statistics with Bloom Filters

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

84

4.4.2.3 Deployment and configuration

The above-described components will be deployed as Docker containers.

Configuration parameters of the server include: the IP addresses and port numbers of the two
types of clients, and in turn the clients should have the server’s IP address and port number.
Requestor and client do not interact with each other.

4.4.2.4 Implementation constraints

During the collection of encrypted Bloom filters provided by the client, the server may wait for the
reception of several Bloom Filters (at different times) before applying the statistics operation.

The input Bloom filters must have all the same size so that operations such as intersection could
be defined.

4.4.2.5 APIs

The server handles the privacy-preserving computation requests issued by the requestor. It also
interacts with the client, requesting to provide with encrypted Bloom filters as inputs to the
requested computation. The server finally returns the encrypted results to the requestor.

It is assumed that an active connection exists between the client and the server and that the client
listens to data requests from the server. When the client receives a request from the server, it
invokes the following POST method.

Requestor API

Server API

Client API

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

85

5 Platform Security and Transparency

5.1 IAM

5.1.1 Main components and their relationships

The Identity Access Manager will provide the Authentication and Authorization services to the
different components that integrate the PAPAYA framework with especial attention to the
PAPAYA platform. In order to do so and taking into consideration that the research and
development of these types of services is not a main part of the scope of the PAPAYA project,
the Consortium has chosen to use a solution based on an already available and wide used open
source solution. Starting from it, the Consortium plans to adapt and adjust the solutions chosen
to suit into the PAPAYA developments. After researching in the state-of-the-art available solutions
within the market the Consortium has selected Keycloak10 as the underlying framework for
providing Authentication and Authorization services.

In order to have a minimum impact from the point of view of time and resources needed for the
integration of this type of services within the PAPAYA platform, the consortium has chosen to
apply the classical bastion-hosts approach, where a gateway/proxy filter all the incoming request
to a private network to assure that they are authenticated and authorized and if so redirect the
corresponding request to the appropriate component. Figure 41 shows in detail the design of the
selected approach, defining the following components: IAM server, User Data Base (DDBB) and
the Security Proxy and their iteration with the rest the components that comprise the PAPAYA
platform and clients. Further information describing these components can be seen in 5.1.2. It is
worth mentioning that among the family of different solutions that Keycloak facilitates, there is
already a gateway/proxy software devoted for applying the bastion-host paradigm named Security
Proxy11.

Applying this solution to the development of the PAPAYA Platform will not only have a minimum
impact on the rest of the developments but it also provides a solution that based on common and
widely used components from the industry of the protocols such as OpenID Connect12 and OAuthz
213. This approach will also facilitate the future integration with legacy systems, improving then
the market opportunities of the final results of the PAPAYA project.

10 https://www.keycloak.org/
11 https://github.com/YunSangJun/keycloak-proxy-demo
12 https://openid.net/connect/
13 https://oauth.net/2/

https://www.keycloak.org/
https://github.com/YunSangJun/keycloak-proxy-demo
https://openid.net/connect/
https://oauth.net/2/

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

86

Figure 41: IAM and Security Proxy in the PAPAYA Platform

The diagram below (Figure 42) shows in detail the communication flow when requesting a service
to the PAPAYA platform. As first step, the Data Controller Administrator, when setting up the
PAPAYA Platform, will register the new PAPAYA client components as clients in the IAM,
obtaining then the corresponding token associated to that client. Once the client has been
registered within the IAM system, it can use the received bearer Token that can be utilized for
several different requests to the Computation Components. In order to do so the IAM will provide
an interface to allow the Data Controller Administrators to update/create new clients. It should be
noted that only with including the bearer token on the corresponding header of the request by the
PAPAYA client, the Security Proxy will carry out with all the Authentication and Authorization
operations in a transparent way from the point of view of the developer. Moreover, in the case
that the operation is granted by the IAM, the Security Proxy will redirect the request directly to the
appropriate Computation Component.

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

87

Figure 42: Communication flow requesting a service to the PAPAYA platform

5.1.2 Deployment and configuration

For the deployment and configuration, as mentioned before, it had been chosen a classical
bastion-host approach. Therefore, it has a direct impact on the deployment of the whole PAPAYA
Platform. In order to secure the system properly, all the access to the platform must past through
the Security Proxy server and then be redirect to the different computation components that
conform the PAPAYA Platform. Hence, it must be mentioned that the different computation
components will be never accessed from the exterior directly.

In addition, as it shown in the Figure 41, the final deployment will need to include three different
components in order the PAPAYA Platform can be provided with Authentication and Authorization
services: IAM server, User Data Base (DDBB) and the Security Proxy itself. It is worth mentioning
that these three different components will de integrated into the PAPAYA platform using Docker
containers and defining the associated services with the help the Kubernetes functionality The
User Data Base will be used to store the user and client’s information In our particular case it is
foreseen that will need to incorporate end users into system (just the administrators of the

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

88

system). However, the system will need to store the clients’ information appropriately and this
component is devoted for it. Regarding the connectivity of this component, the User Data Base
component won’t need to have an external access, as the IAM server will be only component that
will access to it. The IAM Server will be deployed using an adapted version of the Keycloak server
configured to suit the project purposes. This component will be used from the exterior for two
different purposes: for the IAM administrator to update the PAPAYA clients and for the PAPAYA
clients to obtain the corresponding bearer Token. Thereby this component will need to be
accessible from the exterior hence it will be necessary to define the proper service on the final
Kubernetes deployment configuration.

And last but not least the final deployment will include the Security Proxy. In order to configure
the Security Proxy, we need to appropriately set up the different parameters of the Security Proxy
server itself but also the type of redirections to the computation components. An example of the
configuration file of the Security Proxy defining the access and redirections to the computation
component 1 is as follows:

replicaCount: 1

image:

 repository: papaya/security-proxy

 tag: 1.0.1.Final

 pullPolicy: IfNotPresent

...

configmap:

 targetUrl: http://computation-component-1-service

 realm: computation

 realmPublicKey: "MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCg...4qwIDAQAB"

 authServerUrl: http://iam.papaya.eu/authvb

 resource: computation-component-1

 secret: 2b2c17f0-245e-4978-a663-9a02a268a8f4

 pattern: /computation-component-1

 rolesAllowed: computator

This configuration file will be uploaded when a new service is defined in PAPAYA platform, in
order the client will be able to access to the new mentioned service.

Obviously, this component will be required to be accessible from the exterior (on our particular
case for the different PAPAYA clients configured). Therefore, as with the IAM Server commented
before, it will be necessary to define properly the specific service on the final Kubernetes
deployment configuration.

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

89

5.1.3 Implementation constraints

The solution selected is widely accepted and used across the web wide world. However as
mentioned before, selecting this bastion-hosts paradigm implies some limitations in the final
deployment. The main constrain associated with this approach is that all accesses (HTTP and/or
TCP) from the exterior to the computing components within the PAPAYA Platform must pass
through the Security Proxy. Therefore, on one hand the final deployment must assure that no
external access can be performed to the internal components. On the other hand, the fact that all
the accesses are done through the Security Proxy can produce a bottleneck effect when
accessing to the PAPAYA Platform services. However, this effect can be easily corrected by
incrementing the number of nodes devoted to execute the Security Proxy service.

5.1.4 APIs

As the solution selected is based on an already existing open source software, the definition of
the API and the details of the different type of parameters involved can be obtained using the
following link: https://www.keycloak.org/docs-api/6.0/rest-api/index.html

Moreover, for the different installation and configuration aspects, it can be consulted in:
https://www.keycloak.org/docs/latest/server_installation/index.html

5.2 Auditing

To support auditing and towards being able to hold stakeholders accountable for their use of
PAPAYA, data processing is logged both as part of the platform and locally at agents.

5.2.1 Platform auditing

Platform auditing should enable a platform admin to view all logs from all processing on the
platform through a centralized log analysis system. Further, clients should be able to view all of
their relevant logs from processing on the platform. Both of these views should be provided
through the platform dashboard (see Section 3).

5.2.1.1 Main components and their relationships

There are two main components dedicated to auditing:

 the Auditing Agent (AA) component that is responsible for transporting logs from platform

services, and

 the Auditing Collector (AC) component that collects all logs for centralized analysis.

There are many AAs on the platform—conceptually up to one per platform service instance—that
transport logs from the service instance(s) to one or a few (for redundancy/scaling) ACs. The AC
is queried by the platform dashboard for retrieving logs. Figure 43 shows the setting of the
components with some additional details explained later.

https://www.keycloak.org/docs-api/6.0/rest-api/index.html
https://www.keycloak.org/docs/latest/server_installation/index.html

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

90

Figure 43: Each Kubernetes node runs an Audit Agent (AA) that transports the logs generated by services on the

node to one or more Auditing Collectors (AC). The Platform Dashboard reads logs from AC and makes them

available to Platform Dashboard users.

Concretely, the AA and AC will be based on the Elastic stack14. The AA will be implemented as
an Elastic Beat15. A Beat is a framework for a lightweight data transport to other components of
the Elastic Stack, providing a standardized way of configuring the data transport and dealing with
aspects like transport security over TLS and authentication. In our case, we will first customize a
Beat to read from the audit logs generated by instances of services in the platform. Later, out
Beat can be augmented to provide more advanced security features, as discussed shortly.

AAs will transport logs to a AC that is implemented as an Elasticsearch16 instance. Elasticsearch
is an analytics engine suitable for log and metrics analysis. To view logs stored in Elasticsearch,
the platform dashboard will use a customized Kibana17 user interface, as part of the Elastic stack.
If particular functionality for securing logs (see later discussion under implementation) needs any
centralized processing of logs, then we will add Logstash18 as part of the AC component before
logs are sent to Elasticsearch.

5.2.1.2 Deployment and configuration

The collector component will be deployed as one or more dedicated containers by the platform
operator. The operator needs to provide the location of the collector(s) and means for AAs to
authenticate the AC(s) as part of the AA configuration. With Elastic Beats, this is preferably (for
any sizeable deployment) done by setting up a local Certificate Authority (CA). AAs (beats) are
then configured to resolve a (potentially internal) domain (or host) name and validate that the

14 https://www.elastic.co/
15 https://www.elastic.co/products/beats
16 https://www.elastic.co/products/elasticsearch
17 https://www.elastic.co/products/kibana
18 https://www.elastic.co/products/logstash

https://www.elastic.co/
https://www.elastic.co/products/beats
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/kibana
https://www.elastic.co/products/logstash

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

91

certificate presented by the AC is signed by the local CA. An interim solution could be to make
the AC(s) internal through a pod with a ClusterIP service.

There are a number of possible ways to deploy AAs such that they can access logs from an
instance of a platform service running as a pod in Kubernetes19. We opt for the simple but
recommended solution of a node logging agent. First, we require that all platform services must
generate logs by writing to standard output and standard error20. This will ensure that Kubernetes
can receive the logs from the pods and then write the logs to the node's filesystem. Next, using a
DeamonSet21 replica, we run one logging agent pod on each node. The logging agent pod
contains one container that runs our AA component. Finally, the AA component reads logs from
the filesystem and transports them to the AC(s).

The configuration of all AAs should take place as part of the orchestration in Kubernetes to deploy
an AA at every node. In addition to knowing the location of the AC(s) and how to authenticate the
connection for log transport, we require that an opaque blob of unspecified data (in the order of
kilobytes) can also be provided to each AA as part of the configuration. This blob may be used to
distribute cryptographic key material for use by AAs in making data authentic beyond the transport
phase, i.e., when log data is, e.g., exported from Kibana for use by a third party for the sake of
accountability or auditability.

We plan to deploy our platform auditing components in two phases. For the first phase, in M24,
we will use any many off-the-shelf Elastic stack components as possible to make sure that we
can create, collect, transport, save, and ultimately read logs. For the second and final phase, in
M36, we will augment the AA and/or AC components to make all logs (i) tamper proof and (ii)
verifiable—in terms of authenticity and time—by third parties. These modifications for M36 is what
may require cryptographic key material distributed to each AA as part of their configuration, hence
the requirement of an opaque blob as part of the configuration.

5.2.1.3 Implementation constraints

The primary implementation constraint imposed by our approach is that all platform services must
log to standard output and standard error. The only noteworthy constraint for the logging
components is that a Beat in Elastic for the AA is written in the programming language Go22.

19 https://kubernetes.io/docs/concepts/cluster-administration/logging/
20 In Kubernetes, everything a containerized application writes to standard output and standard error is
handled and redirected somewhere by the container engine used by Kubernetes. By default, when Docker
is used, this results in logs written to /var/log/. We may want to look at creating a custom log driver for
Kubernetes for M36, but for M24 we should try to stick to as much off-the-shelf as possible.
21 https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
22 https://github.com/elastic/beats/

https://kubernetes.io/docs/concepts/cluster-administration/logging/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://github.com/elastic/beats/

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

92

5.2.1.4 APIs

The platform auditing components ingests arbitrary bytes from standard output and standard error
of containers, and then transports the data in Elasticsearch. There are no other applicable public-
facing APIs to document that we are sure of that we need.

We may consider exposing an API towards clients to download their logs as part of the platform
API. This could be useful for clients to ingest into their logging infrastructure and also for
increasing transparency towards data subjects. At the time of writing, we cannot think of any
explicit information that would not be available from the agent auditing logs (described next) as-
is, but this might become clearer as we progress in the project.

5.2.2 Agent auditing

Agent auditing should enable a client of the PAPAYA platform to (i) directly view logs of data
processing performed by an agent, e.g., for debugging purposes, and (ii) easily collect and
transport logs from the agent into the client’s own logging infrastructure, should one be available.
For (i), the minimal agent dashboard (see Section 3) supports viewing logs. For (ii), the AA (and
AC if they wish) used for platform auditing will be completely reusable by a client. This is because
logs are extracted from containers by AA and collected at ACs. The security modifications for M36
to make the AA and AC produce tamper proof and verifiable logs will be designed with agent
auditing use in mind.

5.3 Key Manager

5.3.1 Main components and their relationships

The Key Manager (KM) component will carry out of managing the cryptographic material during
the whole lifecycle of the PAPAYA project in the cases where it will be required.

The KM is accessible over a network and provides support to client app components of the system
to store the different ccryptographic material necessary for performing the cryptographic
operations securely throughout the regular business flows of the platform.

The cryptographic material that the Key Manager works with includes, among others, symmetric
keys, public keys, private keys, and certificates. Furthermore, the cryptographic objects may be
of specific types according to particular needs of the components (end points) that uses them.

In addition, the Key Manager unifies the key management for local and remote endpoints.
Especially, we take into consideration that the KM provides services compliant with Key
Management Interoperability Protocol (KMIP)23, which has been standardized by OASIS24.
The Key Manager consists of three main components:

23 https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=kmip
24 https://www.oasis-open.org/

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=kmip
https://www.oasis-open.org/

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

93

- Key Manager Server (KM Server): this component is a server based on Barbican25 and

provides a REST API designed for the secure storage, provisioning and management of

secrets such as passwords, encryption keys and X.509 Certificates. It is aimed at being

useful for all environments, including large ephemeral Clouds.

- Key Manager Database (KM Database). The database is a configured PostgreSQL

instance, that will allow the management of the cryptographic material. The KM Server will

provide an interface and database session for accessing the database.

- Key Manager Client (KMClient). This library is designed to be easily integrated within the

clients components and it is composed of the following parts:

o The main service KMClient, which needs the following parameters: the KMServer

URL and an authorization token. It responsible of the connection between the client

components and the KM Server

o The models, bean objects which adapt the dataset that the KM Server needs to

create the secrets such as cryptographic material name, cryptographic material

type.

o The API’s services such as add a cryptographic material or delete a cryptographic

material.

Using these components, an http request can be created by any component of PAPAYA and
access to the KM Server services. Thereby the KM Server will verify the token provided by the
client component within the request connecting to the corresponding IAM on the Data Controller
Facilities, checking that it is authenticated and authorized and performs the requested service.

The following diagram (Figure 44) shows the relationship between the KM components and their
integration in PAPAYA.

It is worth mentioning that the KM services will be provided to the Data Controller Controller
components, hence the Data Controller will not only host the KM services on its premises (to have
the control on the cryptographic material) but also control the access to the KM services.

25 https://wiki.openstack.org/wiki/Barbican

https://wiki.openstack.org/wiki/Barbican

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

94

Figure 44: Key Manager components and their integration in PAPAYA.

5.3.2 Deployment and configuration

KM Server should be reached from the client app that would require any operation related with
secrets; hence, it will not be accessible from the exterior. The access to the KM Server is
performed through the KM Client via http request. The KM Server deployment will be based on
Barbican deployment adapting it and configured for client needs. Thereby for this component it is
necessary to define the correspondent service on the final deployment configuration (using
Kubernates, Docker Compose or any other technology supporting Dockers).

KM Database should be reached only from KM Server (and not from other exterior components).
The installation will be a PostgreSQL installation and configuration. For this component, it is
necessary to define the correspondent service on the final Kubernetes deployment configuration.

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

95

KM Client is a library that should be imported in the component that needs to be able to call the
KM to ask for their services. In addition, this component should be configured with the URL of KM
Server in their properties file.

5.3.3 Implementation constraints

The cryptographic management tools selected to be applied into the PAPAYA project is bases in
a wide known and used solution. Hence it is not foreseen any important constrains. Just in the
case too many components will request the services of the KM Server, exceeding the KM
capacities, it could concur on be a bottleneck effect. However, this eventuality has an easy
solution by incrementing the number of nodes providing the KM Servers services.

5.3.4 APIs

The Key Manager will provide a REST API that will allow to storage and to retrieve the
cryptographic material.

The KM Server provides the following services to manage secrets:

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

96

POST /secrets

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

97

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

98

GET /secrets

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

99

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

100

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

101

GET /secrets/{uuid}

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

102

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

103

PUT /secrets/{uuid}

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

104

DELETE /secrets/{uuid}

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

105

GET /secrets/{uuid}/payload

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

106

6 PAPAYA Dashboards

There are two dashboards in PAPAYA: the platform dashboard and the agent dashboard. The
platform and agent dashboards are, as the names suggest, tied to the respective architectural
components and their respective back-ends provide for the dashboards. The dashboards are
accessed through web views in a web browser by their respective target users.

6.1 Platform Dashboard

Platform dashboard will be implemented as a Web application hosted in a container that will run
on the PAPAYA’s K8s cluster. The dashboard will provide the following functionality:
1. Present a list of services provided by the platform (Service’s Catalog)

2. Add/Edit/Delete services.

3. Create/Deploy/Delete application (a dedicated instance of each of the provided services).

4. Allow application’s owners to monitor the flow of the application by presenting operational

logs.

6.1.1 Main components and their relationships

The Platform Dashboard consists of two main components (see Figure 45): the Web-UI and the
backend.

The Web-UI will provide interface to service’s catalog, applications list and application operational
log.

The backend will be implemented as a python Flask26 application. Flask is a microframework
based on Werkzeug27. The Platform dashboard backend consists of five main modules.

 The Service’s Catalog module is responsible of all actions related to service’s

management, such as adding a new service, editing or deleting the existing one. Editing

and deletion will be allowed only to the service author (provider) or platform administrator.

Each service should describe the required configuration and setup preferences. Prior to a

service creation, the service provider will upload two images to PAPAYA’s container

registry, one image for the agent and the other for the server. The service provider will

add the service in the platform dashboard (services catalog tab) and will provide all the

required information such as images name, the ports exposed on both containers, service

description etc.

 The Application module is responsible for application management. The platform client

will choose a service of interest and provide all required configurations for the service. The

server will create a dedicated application for the client. The client will be able to activate,

terminate or delete the application. After application activation the dashboard will present

an application URL, through which the communication with the application should be

26 http://flask.pocoo.org/
27 https://werkzeug.palletsprojects.com/en/0.14.x/

http://flask.pocoo.org/
https://werkzeug.palletsprojects.com/en/0.14.x/

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

107

performed. In addition, the dashboard will allow the platform client to download a
configuration file for the agent container, where the server_host and server_port are

defined. The client will pull the agent container from the CR and deploy it. The deletion of

application is not allowed while the application is running.

 The Logger module is responsible of the communication with the Loggingbeat

component. Via the logger module, the dashboard will provide operational logs to the

platform administrators and for the applications owners. The Loggingbeat is responsible

for harvesting the application’s operational logs from their standard output and standard

error channels and shipping them to Elasticsearch28 (ES) component and retrieve the logs

from the ES for presentation in the Platform Dashboard. The Loggingbeat component will

be described in details in Section 5.2.

 K8s client module allows the execution of Kubernetes commands. This component links

between the platform dashboard and the Kubernetes cluster, where the applications and

platform itself will run.

 DB component will communicate with the relational database where the users’, services’

and applications’ data will be stored. The DB can be in one of two ways: provided as an

external cloud service or DB running in a container using persistent volume.

Figure 45: Preliminary platform dashboard design

6.1.2 Deployment and configuration

The platform administrator will deploy the platform dashboard on the Kubernetes cluster and
provide all the required configurations and appropriate credentials, such as DB credentials, ES

28 https://www.elastic.co/

https://www.elastic.co/
https://www.elastic.co/

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

108

credentials and container registry29 (CR) credentials. The platform dashboard will receive all the
relevant credentials using Kubernetes secrets objects30. Prior to dashboard deployment, the
platform administrator will create a dedicated Kubernetes service account and provide cluster-
admin privileges to that account. Platform dashboard will run with that service account name.
Applications deployed by the platform dashboard will run under a default service account name
(without cluster admin privileges).

6.1.3 Implementation constraints

The dashboard assumes that the user that sends request is already authenticated (by Identity
and Access Management (IAM) mechanism described in Section 5.1).

6.1.4 APIs

The platform dashboard will provide the following views:
1. Application

2. Service (Services Catalog)

3. Logs

6.2 Agent Dashboard

The agent dashboard is intended for use by a client during development and operation of a
PAPAYA agent. The dashboard provides two views, one for viewing the data processing logs
from an agent and another view showing the configuration of an agent.

6.2.1 Main components and their relationships

The agent dashboard consists of a backend and a frontend component. The backend exposes a
HTTP server on localhost that provides the two views as web-views using the frontend component
running in a browser used by the client.

6.2.2 Deployment and configuration

The agent dashboard will be deployed as a standalone binary downloadable from the Platform
dashboard. The binary is intended to be run on-demand from the command line by a client as
part of development. We leave more advanced deployment as part of operations to clients. On
launch, the binary takes two configuration options: the identifier for the container to directly read
logs from (using Docker logs), and the filesystem path to the agent’s configuration file. The
configuration file is provided either by the agent when the container is run or downloaded from
the platform dashboard.

29 https://www.ibm.com/cloud/container-registry
30 https://kubernetes.io/docs/concepts/configuration/secret/

https://www.ibm.com/cloud/container-registry
https://kubernetes.io/docs/concepts/configuration/secret/

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

109

6.2.3 Implementation constraints

The agent dashboard should be lightweight and quick to run for a single developer, support
multiple architectures, and be possible to distribute as a standalone binary. We intend to use Go
as the programming language for these reasons.

6.2.4 APIs

Only an internal API between backend and frontend. The input to the agent dashboard is provided
as part of running the tool, as described in Section 6.2.2, and the tool provides no output beyond
UIs.

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

110

7 Data Subject Toolbox

The data subject toolbox from PAPAYA consists of a number of independent or at most loosely
coupled tools with the commonality that each tool provides a UI intended for data subjects. Using
the toolbox, a client using the PAPAYA platform can integrate one or more of the tools in its data
subject facing UIs to provide an integrated and seamless data subject dashboard. We opted for
this design—instead of a monolithic dashboard targeting data subjects—ultimately for the sake of
usability for data subjects, highlighted in requirements part of D2.2 [1]. Likely, most PAPAYA
clients already have data subject facing applications that they would wish to augment and not
completely replace with one or more of the functionalities provided by the data subject toolbox.
Further, from D2.1 and D2.2 [1], we know that all data subject-facing UIs should be as part of
mobile applications. Next, we describe the four tools part of the data subject toolbox.

7.1 Explaining Privacy-preserving Analytics

This tool explains to data subjects how the privacy-preserving data analytics using PAPAYA
works and how the data controller has reasoned about the risks to the data subject due to this
processing. The tool is integrated by the user of the PAPAYA platform (that is, the data controller
and/or data processor) in its data subject facing UIs. The tool is appropriate to include as part of
a consent or a privacy policy views in a UI. D3.2 provides more details on the purposes and
technical design of the tool.

7.1.1 Main components and their relationships

The tool consists of two categories on independent components: one category for conveying how
privacy-preserving analytics work and another for explaining risks. There will be at least one
component per type of analytics developed in PAPAYA (see Platform Services in Section 4) and
several components that explain different aspects of risks. Each component is designed to be
completely standalone.

7.1.2 Deployment and configuration

For deployment, the components of the tool are intended to be completely deployed as a complied
part of a mobile app provided by the platform user to data subjects.

Each component is configured by a JSON file, D3.2 contains further details on planned format
(will be fully defined first in M24 as part of Task 3.3 in WP3).

For explaining how privacy-preserving analytics work the configuration file of the platform agent
will be needed. We expect that the agent configuration specifies the type of analytic performed
by the agent (e.g., collaborative training or apply neural network model) and relevant parameters
for the analytics. We assume that this configuration file is generated by or provided together with
each platform analytics agent as downloaded from the platform.

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

111

7.1.3 Implementation constraints

To make it as easy as possible to integrate the components into existing mobile apps we plan to
use either Flutter or Angular for all components. Which of the two approaches to use will be
determined during development based on consortium and developer preferences.

7.2 Data Disclosure Visualization Tool

The Disclosure Visualization Tool (DVT) visualizes what personal data a data subject has
disclosed to different parties. This is particular important for privacy-preserving analytics, because
what data is available to who might be counter-intuitive. DVT is therefore complementary to the
tool for explaining privacy-preserving analytics. We have decided to split the tools to give as much
flexibility as possible to PAPAYA platform users in choosing the most appropriate components.

7.2.1 Main components and their relationships

DVT consists of a single UI view that shows a playful and useful visualization of the provided data
and their respective recipients.

7.2.2 Deployment and configuration

DVT is intended to be deployed as part of a mobile app, as for the explaining privacy-preserving
analytics components. DVT is configured by either a JSON file or a couple of function pointers.
The configuration consists of descriptions of disclosed data and their respective recipients.
Support for function pointers enable a user of the DTV view to stream data, better supporting
large datasets (e.g., for infinite scrolling of a timeline). The specific format will be based on a
subset of the data model for the open source Data Track tool from the A4Cloud project31.

7.2.3 Implementation constraints

DVT shares the same implementation constraints as Explaining Privacy-preserving Analytics.

7.3 Annotated Log View Tool

The Annotated Log Tool (ALT) provides an annotated log view for data subjects that aims to
explain the actual data processing that have taken place on relevant personal data disclosed by
the data subject.

7.3.1 Main components and their relationships

ALT consist of two components: an UI view component and an annotator component. The
annotator component is to be called by a PAPAYA analytics user for each call an analytics agent.
The component takes as input a list of data subject identifiers, the configuration of the analytics
agent, and free-text descriptions of the performed processing and processed data. The
component provides as output a map of data subject identifier-to-strings, where each string uses

31 https://github.com/pylls/datatrack

https://github.com/pylls/datatrack

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

112

an internal format. The output is intended to be stored, for each data subject identifier, together
with a timestamp by the analytics user in whatever system it sees fit (e.g., most analytics users
likely have a database of users already, or something similar). Section 4.3.4 provides further
details on the input and output formats.

The UI view component takes as input a subsequence (sorted by time) of strings from the
annotator component for one data subject identifier and provides as output a UI view that presents
the recorded data processing.

7.3.2 Deployment and configuration

The UI view component of ALT is intended to be deployed in a mobile app just as the DVT and
Explaining Privacy-preserving Analytics tools. The annotator component is intended to be
integrated completely in the data processing software of the user of the PAPAYA platform. Our
goal is to provide implementations of the annotator component in a number of programming
languages to ease adoption.

There is no configuration for the annotator view—it is fully deterministic—therefore the UI view
component is completely defined by its expected input generated by the annotator component.

7.3.3 Implementation constraints

The UI view component shares the same constraints as the DVT and Explaining Privacy-
preserving Analytics tools. The annotator component must be possible to implement in a number
of different programming languages. Likely, it is not motivated to distribute a simple function as a
container.

7.3.4 APIs

ALT exposes one API call as part of the annotator component, intended to be called by the
processing system for each use of an analytics agent. The API call will be implemented in a
number of different programming language: hence, the data types described below are described
in terms of expected requirements on the used type. The description of this API does not use the
same format as the other APIs because it's not a RESTful API (which is what Swagger is intended
for).
The API call takes as mandatory input:

 A list of data subject identifiers. The identifiers identify (within the system performing the

data processing) each data subject whose data is being processed as part of one use of

the analytics agent. The list type must be possible to enumerate and finite. Each identifier

must be possible to use as a key in a key-value map provided as output (see below).

 The configuration of the analytics agent. The configuration MUST be in the format as

provided by the analytics agent (likely a json string, to be defined).

 A processing description. The free-text processing description MUST be a string (or

equivalent in the language) that succinctly describes the processing performed by using

the analytics agent.

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

113

 A data description. The free-text data description MUST be a string that succinctly

describes the type of processed data.

The API call also takes as optional input:

 A list of purposes. A list of integers, where each integer represents a purpose for the

performed processing. A mapping between integers and purposes will be provided by the

tool.

The API call provides as output for every call with the mandatory input where the list of data
subject identifiers contains at least one identifier:
A mapping of identifiers to UTF-8 strings. For each identifier provided as input, the mapping
contains an UTF-8 encoded string of variable length in an opaque format that describes the
relevant data processing activity.

7.4 Privacy Engine

Ensures data subject access rights to their personal data (among others)

7.4.1 Main components and their relationships

The detailed design and architecture description of the PE and its subcomponents has been
described within the deliverable D3.2 Risk Management Artefacts for Increased Transparency.
So, the details of the services implemented by the Privacy-preserving Manager (PPM) and the
Data Subject Rights Manager (DSRM) subcomponents can be consulted there. However, it will
be necessary to extend the existing information detailed in order to define how this component
will be integrated within the PAPAYA framework and the interaction between the PE and the other
components of the system deployed within the Data Controller facilities. Although each use case
will have a specific final architecture designed ad hoc, the Figure 46 shows the integration of the
PE within the PAPAYA framework with certain level of abstraction that can be applied for any use
case involved.

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

114

Figure 46: Privacy Engine integration in the PAPAYA framework

The diagram above shows three main domains: Data Controller (DC) mobile application, Data
Controller Domain and Data Processor (DP) Domain. The main targets of each domain are as
follows:
 DC Mobile Application: the DC will provide a mobile application to the Data Subject (DS).

This mobile application will be the main interface of the DS with the system and will carry out

the gathering of the data.

 DC Domain: The objective of this domain is to gather the data to be processed. Hence one

of the main components of the whole business flow will be the Data Collector or Aggregator

(some use cases will collect and some others will aggregate the data) devoted to harvest the

data necessary for applying the selected analysis. Then it will pre-process the data using the

corresponding PET in order it can be analyzed in the PAPAYA platform preserving the

security and the privacy of the data of the DS. This domain is an environment controlled by

the DC with the proper Privacy and Security measurements to protect the data, thereby it is

considered as a trusted domain.

 DP Domain: This domain is considered as untrusted therefore all the data that it will access

will be protected adequately. This domain will simulate an externalization of services on the

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

115

cloud by the DC. Therefore, the main target of this domain is taking advantage of the cloud

infrastructure services to process a big amount of data.

As it can be seen on the previous figure, the PE will be integrated in two of those domains: in the
mobile application and the DC Domain. It is worth highlighting that for preserving the security and
the privacy of the data processed by underlying servers (Email Server, Notification Server and
the Protection Orchestrator), the PE and its subcomponents will be deployed within the DC
Domain in a controlled and trusted environment.

7.4.2 Deployment and configuration

As mentioned before, the different subcomponents of the PE and the underlying servers will be
either part of a mobile application or deployed within the DC Domain.
With regards the subcomponents deployed within the mobile application, they have been
designed taking into consideration the final integration on a root main application developed by
the DC. For that purpose, the mobile subcomponents will be implemented using the following
criteria:
 Front End Services: all the different interfaces for the DS as part of the PE will be developed

based on HTML5+Javascript to easily be integrated with the root application just opening a

web viewer on the native mobile implementation.

 Back End Services: The Consortium has agreed that the mobile application will be developed

using the Android SO and framework. Therefore, in order to facilitate the integration of these

services into the final mobile application, they will be provided in a Java library (JAR file) with

a well define interface.

Regarding the services deployed within the DC facilities, the PE will be integrated within a Docker
infrastructure, thereby facilitating the integration with the final deployment in the DC facilities
(using Docker compose or Kubernetes technologies for the deployment). It is worth mentioning,
that the PE will need the following relying services: the email server, notification server and the
protection orchestrator. They will be deployed within the DC facilities to help on preserving the
security and privacy of some the data processed. In order to ease the final deployment, these
relying services will be encapsulated in Dockers as well.

7.4.3 Implementation constraints

As main implementation constraint of the design defined for the development of the PE and
deployment plan described above is that the library developed for the back end mobile application
(JAR file) is strongly tied to the use of an Android OS framework, been more difficult to integrate
it on other mobile application frameworks.

7.4.4 APIs

This section defines in detail the application programming interface of the both main functionalities
that compose the Privacy Engine. The definition of the interfaces of the different subcomponents

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

116

of the Privacy Engine has been developed using the open source tool Swagger32. The outputs
obtained from this tool are as follows.

7.4.4.1 Privacy Preferences Manager (PPM) API

POST /question

32 https://swagger.io/

https://swagger.io/

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

117

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

118

GET /question/{question_id}

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

119

POST /question/answer

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

120

POST /policy_decision_point

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

121

Models

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

122

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

123

7.4.4.2 Data Subject Rights Manager (DSRM) API

POST /admin

POST /event

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

124

Models:

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

125

8 Platform Deployment

The following section describes the deployment process of the PAPAYA platform, uploading and
usage of privacy-preserving services provided by the platform (see Figure 47).

8.1 Platform initialization and platform dashboard deployment

For the PoC usage, the platform will be deployed on IBM’s cloud service. All types of platform’s
users should have valid account on the IBM cloud. This can be done as follows:

1. Create free account on IBM cloud here (https://cloud.ibm.com/registration) and inform

platform administrator when you done.

2. The platform administrator will invite you to the PAPAYA Kubernetes service and grant

you appropriate privileges.

The platform administrator (IBM) will create an account of K8s service and allocate required
resources for the Kubernetes cluster, such as number of nodes, RAM memory, CPUs, disk size
etc. In addition, the platform administrator will allocate the following required external services:

1. CR. The platform administrator will create two namespaces, papaya-client-side and

papaya-server-side. For each namespace the administrator will create a separate

permission group. One group will be used for storing the server-side containers and will

be exposed to administrators and service providers only. The second group is intended

for storing the agent side containers and will be accessible for all three permission groups

(administrators, service providers, and platform clients).

2. Cloud object Storage

3. DB – relational database

4. Provide permissions to the platform users

5. Elasticsearch account

All external services credentials will be saved using Kubernetes secrets mechanism. To obtain
the required credentials (e.g. to use COS service), service providers will need to perform the
following steps:

1. The platform administrator will create a secret.

2. The service provider will add the secret to the pods yaml file33 .

The platform administrator will create the following permission groups:
1. Platform administrator

a. Allocate resources on the Kubernetes cluster

b. Allocate/Create external services

c. Admin access to CR

2. Service providers

a. Active access to the CR

33 https://kubernetes.io/docs/tasks/inject-data-application/distribute-credentials-secure/

https://cloud.ibm.com/registration
https://kubernetes.io/docs/tasks/inject-data-application/distribute-credentials-secure/

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

126

b. If the service requires integration/communication with external service, appropriate

accounts should be created or allocated.

3. Platform Clients

a. Should be able to download only the agent side container from the CR

The platform administrator will deploy the Platform Dashboard using yaml deployment file. Once
the dashboard is deployed, service providers and platform clients could use it to deploy/use the
services.
To support auditing, the platform administrator will execute Loggingbeat as Deamonset on the
Kubernetes cluster and connect it to the Elasticsearch instance.

8.2 Service upload and deployment

This section describes the steps needed in order to upload or use a service. For the PoC usage,
we will use a Container Registry Provided by IBM Cloud. The steps are divided into two phases:
(1) uploading phase; and (2) usage-execution phase.
The following steps are common for both phases:

1. Install the IBM Cloud CLI

2. Install the Docker CLI

3. Install the Container Registry plug-in.

ibmcloud plugin install container-registry -r Bluemix

4. Log in to your IBM Cloud account.

ibmcloud login -a https://cloud.ibm.com

The uploading phase will be done by the service provider user and it consists of the following
steps:

1. Log your local Docker deamon into the IBM Cloud CR

ibmcloud cr login

2. Create two images: server side and client-side agent.

The server-side container will run on papaya’s K8s cluster. The client-side agent will

run on the client’s side. Instructions on how to create the Docker image can be found

in the following link:

https://docs.docker.com/develop/develop-images/baseimages/

3. Upload each image to the appropriate namespace on the CR.

for the server-side images use:

docker tag hello-world de.icr.io/papaya-server-

side/<my_repository>:<my_tag>

docker push de.icr.io/papaya-server-side/<my_repository>:<my_tag>

for the client-side agent images use:

docker tag hello-world de.icr.io/papaya-client-side/<my_repository>:<my_tag>

docker push de.icr.io/papaya-client-side/<my_repository>:<my_tag>

https://cloud.ibm.com/docs/cli?topic=cloud-cli-getting-started#idt-prereq
https://docs.docker.com/install/

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

127

More details and CR commands can be found on the following link.

4. The service provider user (i.e. IBM, ORANGE, EUROCOM) will add a new service to

the services catalog on the Platform dashboard

(papaya.eu-de.containers.appdomain.cloud), while specifying all required fields and

describing in details the service’s flow and requirements.

The usage-execution flow will consist of the following steps:
1. The platform client will login to the Platform dashboard

(papaya.eu-de.containers.appdomain.cloud).

2. The client will select the tab of services catalog and choose the service of interest.

3. The client will provide a configuration file if the service requires so.

4. The client will download the client-side agent image by using the following

commands:

ibmcloud cr login

docker pull <image name>

Where the <image name> is presented in the “services catalog” view on a platform

dashboard under the “Agent Side Container” name and will be structured of the

following

de.icr.io/papaya-client-side/<image>:<tag>

5. After the services are deployed on the k8s cluster (by the platform dashboard

application), the platform will present the url of the deployed service and provide the

option to download the file (env file) that will contain SERVER_HOST_HTTP,

SERVER_PORT_HTTP or SERVER_HOST_TCP, SERVER_PORT_TCP

(accordingly to the communication protocol with the service) and other parameters

that might be essential for communication with the client agent. The client

administrator should be able to provide this file to the client agent, based on how the

agent expects to receive these parameters. Possible ways of doing that are as

follows:

a. Provide the env file as env. variables for the client agent execution.

docker run with an --env-file <file name>

b. Read the env file by the client’s application and provide it to the agent side

within the initiation step. Meaning that the agent side will provide INIT API

and will expect to receive all essential parameters in order to communicate

with appropriate server side.

https://cloud.ibm.com/kubernetes/registry/main/start

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

128

Figure 47: Service upload and deployment diagram

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

129

9 Platform Integration - Evaluation

 In this section we describe briefly how we plan to evaluate the integrated platform. The goal is
to verify that all required components could be deployed (either on the server-side or on the
client-side), could run, could communicate with each other, and could provide required
input/output. We want to stress here that evaluation of each service (e.g. in terms of accuracy,
run time, etc.) is not in the scope of this document (it will be done in WP3). With this being
mentioned, we plan to perform the following steps:

1. For each service described in section 4-7, create dummy service (both, the client-side and

the server-side if required) - a pseudo service which only supports service APIs but

doesn’t have actual service functionality.

2. Deploy the service (both, the client-side and the server-side if required) as described in

Section 8.

3. Run all the services and verify that expected functionality of each service (as described in

D2.2 [1]) is supported.

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

130

10 Conclusions

In this deliverable, we presented the platform functional design, architecture and deployment. We
described in detail the core platform services dealing with privacy-preserving computations as
well as the services responsible to ensure data privacy, security, and transparency of all the
processes while operating the platform. We explain how different services can be integrated into
the platform in a way that they will be interoperable/compatible with each other and could work
together in the integrated platform. We presented the design of platform dashboards that will
provide UI, configuration, and visualization functionality. Finally, we described how all platform
components could be deployed and how we plan to evaluate the integrated platform.

In next version of this document (D4.2 [21]), we plan to provide the full description of incomplete
or not detailedly described services, evaluation results, and changes to the current design that
maybe be required after the platform evaluation.

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

131

11 References

[1] S. Fischer-Hübner, B. Kane, J. S. Pettersson, T. Pulls, L. Iwaya, L. Fritsch, B. Rozenberg,

R. Shmelkin, A. Palomares Perez, N. Ituarte Aranda and J. Carlos, D2.2 - Requirements

Specification, 2019.

[2] B. Bozdemir, O. Ermis, M. Önen, M. Barham, M. Azraoui, S. Canard, B. Vialla, B.

Rozenberg and R. Shmelkin, D3.1 - Preliminary Design of Privacy Preserving Data

Analytics, 2019.

[3] B. Zvika, G. Craig and V. Vinod, "Fully Homomorphic Encryption without

Bootstrapping".

[4] Z. Brakerski, "Fully Homomorphic Encryption without Modulus Switching from Classical

GapSVP," in Annual Cryptology Conference, 2012.

[5] J. Fan and F. Vercauteren, "Somewhat Practical Fully Homomorphic Encryption,"

Cryptology ePrint Archive, vol. Report 2012/144, 2012.

[6] J. H. Cheon, A. Kim, M. Kim and Y. Song, "Homomorphic encryption for arithmetic of

approximate numbers," in International Conference on the Theory and Application of

Cryptology and Information Security, Hong Kong, China, 2017.

[7] S. Canard, B. Vialla, B. Bozdemir, O. Ermis, M. Önen, M. Barham, M. Azraoui, B.

Rozenberg and R. Shmelkin, D3.3 - Complete Specification and Implementation of Privacy

preserving Data Analytics, 2020.

[8] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and

Statistics), Springer, 2006.

[9] S. G. M. M. M. A. a. S. C. Eleonora Ciceri, D2.1: Use Cases and Requirements. PAPAYA

Deliverable D2.1, 2019.

[10] Microsoft Research, Redmond, WA., Microsoft SEAL, :

https://github.com/Microsoft/SEAL, 2018.

[11] S. Halevi, "HElib," [Online]. Available: https://github.com/homenc/HElib.

[12] wiki, "Garbled circuits," [Online]. Available: https://en.wikipedia.org/wiki/Garbled_circuit.

[13] "JustGarble," [Online]. Available: https://github.com/irdan/justGarble.

[14] C. r. a. O. S. University, "libOTe," [Online]. Available: https://github.com/osu-

crypto/libOTe.

[15] wiki, "Oblivious transfer," [Online]. Available:

https://en.wikipedia.org/wiki/Oblivious_transfer.

[16] N. Smart and F. Vercauteren, "fully Homomorphic SIMD Operations".

[17] chiraag, "Gazelle MPC," [Online]. Available:

https://github.com/chiraag/gazelle_mpc/tree/master/src/lib.

Project No. 786767

D4.1 – FUNCTIONAL DESIGN AND
PLATFORM ARCHITECTURE

Dissemination Level – PU

132

[18] Y. Ishai, J. Kilian, K. Nissim and E. Petrank:, "Extending Oblivious Transfers Efficiently,"

in CRYPTO, 2003.

[19] F. Chollet, "Keras," [Online]. Available: https://keras.io/.

[20] J.-G. L. a. J. H. a. K.-Y. Whang, "Trajectory Clustering: A Partition-and-Group

Framework," in SIGMOD '07 Proceedings of the 2007 ACM SIGMOD international

conference on Management of data, Beijing, China , 2007.

[21] B. Rozenberg, R. Shmelkin, B. Bozdemir, O. Ermis, M. Önen, M. Barham, M. Azraoui, S.

Canard, B. Vialla and T. Pulls, D4.2 - Progress report on platform implementation and

PETs integration, 2020.

[22] M. Abdalla, F. Bourse, A. De Caro and D. Poincheval, "Simple Functional Encryption

Schemes for Inner Products," in IACR International Workshop on Public Key

Cryptography, 2015.

[23] M. Abdalla, D. Catalano, D. Fiore, R. Gay and B. Ursu, "Multi-Input Functional

Encryption for Inner Products: Function-Hiding Realizations and Constructions Without

Pairings," in Annual International Cryptology Conference, 2018.

[24] S. Agrawal, B. Libert and D. Stehlé, "Fully Secure Functional Encryption for Inner

Products, from Standard Assumptions," in Annual International Cryptology Conference,

2016.

[25] J. Chotard, E. D. Sans, R. Gay, D. H. Phan and D. Pointcheval, "Decentralized Multi-Client

Functional Encryption for Inner Product," in International Conference on the Theory and

Application of Cryptology and Information Security, 2018.

[26] E. D. Sans, R. Gay and D. Pointcheval, "Reading in the Dark: Classifying Encrypted Digits

with Functional Encryption," IACR Cryptology ePrint Archive, 2018.

[27] C. E. Z. Baltico, D. Catalano, D. Fiore and R. Gay, "Practical Functional Encryption for

Quadratic Functions with Applications to Predicate Encryption," in Annual International

Cryptology Conference, 2017.

